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ABSTRACT 

The growing network of highway video surveillance cameras generates an immense amount of data that proves tedious 
for manual analysis. Automated real-time analysis of such data may provide many solutions, including traffic monitoring, 
traffic incident detection, and smart-city planning. More specifically, assessing traffic speed and density is critical in 
determining dynamic traffic conditions and detecting slowdowns, traffic incidents, and traffic alerts. However, despite 
several advancements, there are numerous challenges in estimating vehicle speed and traffic density, which are integral 
parts of ITS. Some of these challenges include variations in road networks, illumination constraints, weather, structure 
occlusion, and vehicle user-driving behavior. To address these issues, this paper proposes a novel deep learning-based 
framework for instant-level vehicle speed and traffic flow density estimation to effectively harness the potential of existing 
large-scale highway surveillance cameras to assist in real-time traffic analysis. This is achieved using the state-of-the-art 
region-based Siamese MOT network, SiamMOT which detects and associates object instances for multi-object tracking 
(MOT), to accurately estimate instant level vehicle speed in live video feeds. The UA-DETRAC dataset is used to train 
the speed estimation model. Computer simulations show that the proposed framework a) allows the classifying of traffic 
density into light, medium, or heavy traffic flows, b) is robust to different types of road networks and illuminations without 
prior road information, and c) shows good performance when compared to current state-of-the-art methods using adequate 
performance metrics.  

Keywords: vehicle speed estimation, multi-object tracking, vehicle detection, deep learning, traffic density estimation, 
intelligent transportation system 

1. INTRODUCTION
One of the leading causes of road incidents in the United States is speeding. In 2020, the National Highway Traffic Safety 
Administration (NHTSA) reported 11,258 speed-related causalities, which translates to 29% of total traffic fatalities [1]. 
Speeding is a type of aggressive driving behavior often due to impatience, anonymity, and traffic congestion [1]. Much 
work has been done to advance traveler safety in the Intelligent Transportation Systems (ITS) domain; [2] proposed a 
scalable and efficient algorithm for vehicle model detection; [3] explored video action recognition to tackle the problem 
of highway incident detection and classification from live surveillance footage by introducing the HWID12 (Highway 
Incident Detection) dataset; [4] proposed a high precision, deep neural network approach to detecting wrong-way driving 
(WWD) on highway roads. In maritime border security; [5] proposed the first underwater tracking benchmark dataset; and 
[6] proposed augmented reality as a tool for 3D navigation.

This work focuses on traffic control with ITS, the potential for ITS to mitigate issues of collisions, congestion, and other 
road incidents hinges on the ability to harness the large amount of data provided by the vast number of road traffic cameras. 
Although, traffic video feeds provide sufficient information related to traffic flow and density, weather conditions, and 
road incidents. They are often installed at high points and capture low-resolution videos with different vehicle scales due 
to network bandwidth limitations, lack of persistent storage, and privacy concerns, making traffic density estimation 
challenging. An integral part of any ITS is vehicle speed estimation which is necessary to assess the density of traffic and 
predict the possibility of an incident and other forms of road anomalies. However, many existing systems are designed for 
ideal scenarios with sufficient illumination and favorable weather conditions, which do not accurately represent the real-
world scenarios that often involve less-than-ideal weather, such as haze, snow, and rain. Therefore, this article selects a 
dataset that offers diverse and challenging scenarios, which more accurately mirror the real-world conditions for speed 
and traffic density estimation. 
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This article proposes a framework that extracts features from a tracker, synthesizes pixel features from each tracklet (a 
unique tracked object) and uses these features to estimate vehicle speed and traffic density. The proposed framework 
comprises three modules: i) feature extraction & synthesizing module, ii) speed estimation module, and iii) traffic density 
estimation module which classifies traffic density per image sequence into heavy, medium, or light traffic. The output of 
the multi-object tracking (MOT) model feeds into the feature extraction module, and pixel speed and pixel distance features 
are synthesized for each tracklet. These features are input to the speed and traffic density estimation models trained on the 
UA-DETRAC dataset[7]–[9]. The key contributions of this paper are: 

a) A novel framework is proposed for jointly estimating vehicle speed and traffic density on roads in an end-to-
end manner that can adapt to any off-the-shelf multi-object tracker. 

b) The advantages and limitations of adopting multi-object tracking for motion modeling and linear regression
in tandem on instant speed estimation tasks are explored. 

The remainder of this paper is organized as follows. The related work is reviewed in detail in Section II. The description 
of each algorithmic component is covered in Section III. Section IV presents the experimental results. Finally, section V 
concludes the study. 

2. RELATED WORK

 Several methods have been proposed to address the problem of vehicle speed estimation. These methods can be 
categorized into conventional computer vision and machine learning-based methods. 

2.1 Conventional approaches 

Llorca et al. [10] proposed a novel two-camera-based approach where each camera has different focal lengths and 
orientations. They used the vehicle's license plate as the reference point to evaluate the relative distance of the vehicles 
with respect to the cameras. Viet-Hoa et al. [11] proposed a geometric setup using an equilateral triangle as a reference 
object on the ground. The triangular image is then used to estimate the camera parameters. Camera parameters, together 
with an optical flow algorithm, are used to approximate the motion vectors of traffic video frames and calculate the moving 
speed of vehicles of traffic video frames and calculate the moving speed of vehicles. Kanagamalliga and Vasuki [12] 
proposed a contour-based approach to vehicle tracking. They perform movement estimation and object tracking using 
optical flow and Gabor features-based contour model. Sandeep et al. [13] adopted a normalized self-adaptive optical flow 
to estimate the direction of traffic flow and filter out noise using a standard Gaussian filter and self-adaptive window to 
identify moving object areas. El Bouziady et al.[14] adopted Speed Up Robust Features (SURF) for vehicle detection and 
used geometric derivatives to get vehicle speed from vehicle depth variation. Ibrahim et al. [15] used an adaptive 
background subtraction technique for object detection and performed tracking by monitoring the vehicle's entrance and 
exit of the scene. Speed was measured by counting the number of frames a vehicle takes to exit. 
These methods often rely on carefully crafted features for vehicle detection and custom setups for estimating speed, which 
is often not feasible in real-world scenarios, especially under weather conditions such as rainy, hazy, snowy, or foggy 
conditions. Another drawback of conventional approaches for vehicle detection is its inability to accurately and 
continuously detect small and/or occluded vehicles in traffic which could affect the efficiency of the traffic density 
estimation algorithm. Furthermore, these methods often require a reference point or object to perform measurements which 
is not feasible for every camera in an ITS network.  

2.2 Machine learning-based approach 

Modern machine/deep learning methods address these challenges by taking advantage of recent advancements in 
Convolutional Neural Networks (CNNs) [16] .  Most machine learning-based vehicle speed estimation methods comprise 
i) vehicle detection, ii) vehicle tracking, and iii) speed calculation modules.

The introduction of large-scale datasets for vehicle detection such as UA-DETRAC [8], Boxy [17], EAGLE [18], and 
VAID [19] have paved the way for the development of highly efficient deep learning based-models for vehicle detection 
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from land and aerial videos. CNN-based object detectors have gained significant improvements for various computer 
vision-related tasks. Ren et al. [20] proposed Faster R-CNN to provide real-time object detection with Region Proposal 
Networks (RPN) which simultaneously predicts object bounds and outputs objectiveness scores at each position. Redmon 
et al. [21] proposed an extremely fast approach for object detection called You Only Look Once (YOLO). A single neural 
network is used to directly predict bounding boxes and class probabilities in full-sized images in one pass. Wang et al. 
[22] proposed a High-Resolution Network (HRNet) that maintains high-resolution representations throughout the network
process. The high-to-low resolution convolution streams are connected in parallel with repeated information exchange
across resolutions.

Several object tracking algorithms have been proposed with various degrees of efficiency. Kalman filters have been 
adopted for single and multiple objects tracking problems [13], [23]. Correlation filter-based approaches such as KCF [24] 
and BACF [25] learn discriminative features between the target and the surrounding environment. BACF further models 
the changes in background and foreground of the object over time, resulting in improved tracking accuracy.  Simple Online 
and Realtime Tracking (SORT)[26], a tracking-by-detection framework where detection results are associated across 
frames through motion modelling. SiamMOT, a Siamese Multi-object tracking network builds upon SORT and Faster-
RCNN using a region-based Siamese tracker for instance-level motion modelling [27] where motion is modelled either 
implicitly using multi-layer perceptron (MLP) to implicitly estimate motion between two frames or explicitly which 
includes the usage of a channel-wise cross-correlation map for data association. Specifically, there is a correlation between 
each location of a search frame feature map with the target frame feature map. This paper adopts the SiamMOT network 
with explicit motion modelling (EMM).  

This data-driven approach to estimating the speed of vehicles often relies on some assumptions, such as i) prior knowledge 
of the maximum speed limit of the road, ii) static camera positions [28] and iii) road length. The model's input are videos 
and the vehicle's maximum speed in each video footage for training and the predicted speed is a function of the learned 
local movement and the maximum speed. However, techniques have been proposed which are invariant to some of these 
assumptions such as the efficient chained centre network (ECCNet)[29], which is a unified framework for accomplishing 
vehicle detection, tracking speed estimation in parallel. This paper follows a simple mathematical approach invariant to 
road length and maximum speed limit of the road, where the pixel-per-second distance traveled by a tracked vehicle is 
computed and fed into a regression model trained on the UA-DETRAC dataset, and the regression model in training 
intuitively learns the weights required to map pixels to meters and make instant level speed predictions. 

3. PROPOSED METHOD
This work focuses on a data-driven approach to speed and traffic density estimation, where speed estimation is tackled as 
a regression problem leveraging the output of a MOT as the input to our pipeline. Figure 1 shows the proposed framework. 
A trained state-of-the-art region-based Siamese Multi-object Tracking network, SiamMOT is used [27]. For detection, the 
tracking network leverages Faster-RCNN with a standard DLA-34 [30] with feature pyramid [31] as its backbone with an 
explicit motion modeling (EMM) implementation [27]. Features from each output tracklet of the SiamMOT tracker are 
extracted, and pixel features are synthesized. These features are input datapoints to the speed estimation and traffic density 
estimation modules which are machine learning models trained on the UA-DETRAC dataset. Both modules act in parallel 
to make instant-level predictions in real time.  
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Tracked Frame sequences Output frame sequences with 
speed estimation and traffic 
density 

Figure 1: Speed and traffic density estimation pipeline; image frames in the left correspond to tracker output and image frames 
to the right correspond to tracked images with predicted speed and traffic density.  

Figure 2: The Tracklet extraction & Feature Synthesizer module which takes in the tracker output and generates features such as 
pixel distance and pixel speed which are input to the speed estimation and traffic density estimation modules. 

3.1 Tracklet Extraction & Feature Synthesizer Module 

This module takes in the tracker output and synthesizes features which go into the speed estimation module and the traffic 
density module as shown in Figure 2. The output of the tracker for each tracklet consists of: 

i. The four bounding box coordinates (xmin, ymin, xmax, xmax).

ii. The unique ID for each tracked vehicle (tracklet ID).

iii. Tracklet class.

iv. Confidence score.

From the bounding box coordinates the area and centroids of each bounding box is extracted. For every unique tracklet, a 
full motion trajectory is captured.  

Output frame sequences with speed estimation 
and traffic density 

Tracked Frame sequences 
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The pixel distance traveled between two consecutive frames (𝑛 − 1	&	𝑛) by an object is computed using the 2-D Euclidean 
distance of their centroids, given by: 

𝑝𝑖𝑥𝑒𝑙	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 	1(𝑥!"#$%&'(! − 𝑥!"#$%&'(!"#)) + (𝑦!"#$%&'(! − 𝑦!"#$%&'(!"#))      (1) 

The pixel speed is also obtained with the expression below: 

𝑝𝑖𝑥𝑒𝑙	𝑠𝑝𝑒𝑒𝑑 = 	
𝑝𝑖𝑥𝑒𝑙	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 	𝑓𝑟𝑎𝑚𝑒 − 𝑟𝑎𝑡𝑒

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑟𝑎𝑚𝑒𝑠
     (2) 

𝑥!"#$%&'( , 𝑦!"#$%&'( =	
𝑥*+, + 𝑥*'#

2 ,
𝑦*+, + 𝑦*'#

2
     (3) 

Where, number of frames = 2. Note that different number of frames values can be considered. For example, for a video 
with a framerate of 25, the pixel distance for the 25 frames making 1 sec would be accumulated and aggregated to give a 
broadcasted single value for every 25 frames. However, to achieve instant level predictions i.e., predictions for every 
frame, uniquely synthesized features were considered. Obtaining the pixel distance and speed features for n instances of a 
vehicle would give n-1 features, to account for this, forward and backward fills were applied i) backward to estimate the 
first instance given the last n-1 instances and ii) forward to estimate the nth instance given the first n-1 instances, backward 
fill produced better results.  

As an augmentation step to address potential imperfections of the tracker, such as misses caused by occlusion, for every 
tracklet’s trajectory path, there is a check to ensure there are no missing frames. In the event of missing frames, linear 
interpolation is applied to forecast the missing frame’s centroid values given by the following equations.  

𝑥!"#$%&'(_*'..'#/ = 𝑥!"#$%&'(# 	+
(𝑥!"#$%&'($0	𝑥!"#$%&'(#)(𝑓𝑟𝑎𝑚𝑒_𝑖𝑑_𝑚𝑖𝑠𝑠𝑖𝑛𝑔 − 𝑓𝑟𝑎𝑚𝑒_𝑖𝑑2)

A𝑓𝑟𝑎𝑚𝑒'() − 𝑓𝑟𝑎𝑚𝑒'(2B
 

     (4) 

𝑦!"#$%&'(_*'..'#/ = 𝑦!"#$%&'(# 	+
(𝑦!"#$%&'($0	𝑦!"#$%&'(#)(𝑓𝑟𝑎𝑚𝑒_𝑖𝑑_𝑚𝑖𝑠𝑠𝑖𝑛𝑔 − 𝑓𝑟𝑎𝑚𝑒_𝑖𝑑2)

(𝑓𝑟𝑎𝑚𝑒_𝑖𝑑) − 𝑓𝑟𝑎𝑚𝑒_𝑖𝑑2)
 

     (5) 

3.2 Speed Estimation Module 

The output of the tracklet extraction and feature synthesizer module feeds into the speed estimation module. This model 
consists of a regression machine learning model that takes in the following features:  

i. x and y centroid coordinates.

ii. Area of bounding box.

iii. Tracklet ID.

iv. Tracklet class.

v. Pixel distance (pixels).

vi. Pixel speed (pixels/sec).

The model is tasked with predicting speed in m/s given these features. The detailed training experimental procedure of the 
speed estimation model is given in the experiments and results section.  
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3.3 Traffic Density Module 

Similar to the speed estimation module, the output of the tracklet extraction and feature synthesizer module feeds into the 
traffic density module. In this case, the following features are extracted: 

i. x and y centroid coordinates.

ii. Count of tracklets/vehicles in a frame.

Since traffic density is a measure of the number of vehicles per unit road length, a one-time calibration step is performed 
where the distance between the points where a vehicle enters and exits the camera’s view i.e., the first and last frame the 
tracklet appears is computed. This distance is computed for every tracklet and the largest distance which corresponds to 
the longest straight path is extracted and used to approximate the road length of the video. This is mathematically given 
by: 

𝑅𝑜𝑎𝑑	𝑙𝑒𝑛𝑔𝑡ℎ	 ≈ 𝑚𝑎𝑥[1A𝑥!"#$%&'(! − 𝑥!"#$%&'(#B
) + A𝑦!"#$%&'(! − 𝑦!"#$%&'(#B

)	]2:4
     (6) 

Where, (𝑥!"#$%&'(# , 𝑥!"#$%&'(!) and (𝑦!"#$%&'(# , 𝑦!"#$%&'(!) correspond to the x and y-centroid coordinates of the first and 
last frames of T tracklets of which the maximum distance is chosen to be the road length. The traffic density is then given 
by: 

𝑇𝑟𝑎𝑓𝑓𝑖𝑐	𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑐𝑜𝑢𝑛𝑡	𝑝𝑒𝑟	𝑓𝑟𝑎𝑚𝑒

𝑟𝑜𝑎𝑑	𝑙𝑒𝑛𝑔𝑡ℎ
     (7) 

The traffic density feature is fed into an unsupervised clustering algorithm which is tasked with classifying the traffic of 
each video frame into light, medium or heavy traffic density. Procedural training details are given in the results and 
experiments section.  

4. EXPERIMENTS AND RESULTS
4.1 UA-DETRAC Dataset 

The university of Albany Detection and TRACking (UA-DETRAC)[7]–[9] benchmark dataset is a publicly available large 
scale dataset for performance evaluation of detection and MOT models. It consists of 100 challenging videos with more 
than 140,000 image frames with a 960 x 540 resolution and a frame rate of 25 fps captured from diverse real-world traffic 
scenes such as rainy, cloudy, sunny, night scenes. It comprises of 8,250 richly annotated vehicles and 1.21 million vehicle 
bounding box labels. The data is collected at 24 different locations at Beijing and Tianjin, China. Figure 3 shows samples 
from the UA-DETRAC training set. Table 1 shows the number of videos per scene in the 60 videos of training data and 
40 videos of test data along with the total number of frames. 

Table 1: UA-DETRAC data size breakdown 

Dataset Number of Videos by Scenes Number of Frames 

Sunny Cloudy Rainy Night 
Train 15 19 10 16 83,790 

Test 8 11 9 12 56,340 
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        (a)     (b) 

      (c)          (d) 
     Figure 3: Image samples from UA-DETRAC in a) sunny scene, b) cloudy scene c) rainy scene and d) night scene 

4.2 Speed Estimation Model 

To build the speed estimation model, annotations of the UA-DETRAC dataset of all 60 videos were extracted. Key ground 
truth annotation features are the bounding box coordinates, vehicle class and ID, trajectory length, truncation ratio and 
“speed”. Similar to the process outlined in the tracklet extraction & feature synthesizer module, pixel distance and speed 
are generated for each annotation instance. Exploratory analysis reveals that the synthetically generated features, 
particularly pixel and distance speed have strongly positive correlations with the ground truth speed as shown in the 
correlation heat map in Figure 4. The provision of the groundtruth speed values permits the speed estimation problem to 
be addressed with a data-driven supervised learning approach with speed as the target label. The model’s objective is to 
minimize the error between the true speed values and the model’s predictions. Training is performed on a vast number of 
algorithms suitable for regression. For the training 10-fold and 5-fold cross-validations were carried out yielding near 
identical results and the performance metrics considered are the Mean Absolute Error (MAE) which gives the absolute 
difference between model prediction and ground truth value, Root Mean Squared Error (RMSE) which is the square root 
of the mean of the square of all of the error [32], it provides insight on how the error is distributed[33] and the coefficient 
of determination (R2) which captures the variations in the dependent variable (speed) that is predictable from the 
independent variables (features). These metrics are shown in equations 8-11. 

𝑀𝐴𝐸 =
1
𝑛N|𝑒'|

#

'52

 
(8) 

𝑅𝑀𝑆𝐸 =	Q
1
𝑛N𝑒')

#

'52

 

(9) 

𝑅) = 1 −	
∑ 𝑒')#
652

∑ (𝑦' − 𝑦S))#
652

 
(10)
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𝑒' = 𝑦' −	𝑦7T  (11) 

Where, (𝑦' 	, 𝑦7T) is the speed prediction, groundtruth pair and 𝑦S is the mean of ground truth speed. The performances of the 
speed estimation models explored are given in Table 2, with the linear regression model selected.  

Figure 4: Heatmap showing correlation between synthesized features and ground truth speed, the strongest correlations are between 
pixel speed, pixel distance and ground truth speed. 

Table 2: results of speed estimation models on training (using 10-fold cross-validation) and testing. 

Mode Model MAE RMSE 𝑹𝟐 

Training (10-fold 
cross validation) 

Linear Regression [34], [35] 0.0018 0.0024 0.9999 

Lasso Regression [34] 0.1094 0.1695 0.9995 

Huber Regressor [34] 0.0609 0.0255 0.9996 

MLPRegressor [33] 1.0972 1.8792 0.7484 

K Neighbors Regressor [34] 1.2941 2.7783 0.8558 

Test Linear Regression [34] 0.0016 0.0023 0.9999 

4.3 Clustering Model 

To build the clustering model, the pre-processing procedure carried out on the traffic density module was performed on 
the annotations of the training set to generate the traffic density feature. KMeans unsupervised learning was carried out on 
the training data to classify traffic density into heavy, medium, or light. The clustering model was evaluated using the J-
squared error function [36] given by: 

𝐽 = 	NN 𝑟'8||𝑥# − 𝜇8	||)
9

852

#

'52

 
(12) 

 This represents the sum of the squares of the distances of each traffic density data point to its assigned cluster. Where, 
𝑥#	is a traffic density datapoint, 𝜇8 is the centroid of cluster k and 𝑟'8 is a one-hot vector encoding of the K clusters. 
Intuitively, since the clustering model is tasked with grouping traffic density into heavy, medium, and light a K = 3 would 
be natural. Experiments were carried out on the following cluster sizes K = 3, 4, 5, 6 with K = 6 giving the least amount 
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of intersection between clusters. Clusters 4, 1, and 2 were grouped as light, clusters 3 and 0 were grouped as medium and 
cluster 5 was grouped as heavy based on traffic density values as shown in Figure 5. 

 Figure 5: KMeans clustering for traffic density estimation with K = 6; Clustering model output mapping on the left side, 6 
clusters, right side corresponds to the transformation from cluster integers to traffic density tags. Cluster 5 corresponds to 
heavy traffic density, clusters 0 and 3 correspond to medium traffic density and cluster 4, 1 and 2 correspond to light traffic 
density (where traffic density is given in vehicle count per pixel road length). 

4.4 Implementation details 

Training, validation and testing of the speed and traffic density estimation models were carried out on the sklearn [35] and 
pycaret libraries [34]. The results for the trained multi-object tracking network, SiamMOT with the DLA-34 used as the 
backbone for Faster-RCNN reported by [27] is given in table 4. The tracking performance metrics used are the Multiple 
Object Tracking Accuracy (MOTA) and IDF1 [37].  

Table 3: SiamMOT performance as reported [27] 

Dataset MOTA IDF1 
MOT17 [37] 65.9 63.3 

HiEve [38] 51.5 47.9 

4.5 Results 

Table 5 quantifies the performance of the proposed methodology on the 40 test videos of the UA-DETRAC dataset in 
comparison with other state-of-the-art technique(s). Figure 6 shows images selected from the output of this methodology 
across the four scenes considered i.e., sunny, cloudy, rainy. Our approach outperforms [29] across all scenes.  

Table 4: results of our approach in comparison with [29] 

Method MAE RMSE R2 
Ours 0.824 1.621 0.599 

ECCNet[29] 3.100 3.930 -
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Table 5: results of our approach across different scenes in comparison with [29] 

Method Scene MAE RMSE R2 

Ours 

Sunny 1.016 2.341 0.528 

Cloudy 0.571 1.012 0.700 

Rainy 0.771 1.382 0.489 

Night 0.969 1.880 0.636 

      ECCNet [29] 

Sunny 2.850 4.000 - 

Cloudy 2.770 3.510 - 

Rainy 3.180 3.900 - 

Night 3.590 4.480 -
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Figure 6: Videos/Images showing speed and traffic density estimation of our method in a) cloudy scene b) rainy scene c) sunny 
scene d) night scene with light. Full videos here: http://dx.doi.org/10.1117/12.2663643.1, http://dx.doi.org/10.1117/12.2663643.2, 
http://dx.doi.org/10.1117/12.2663643.3, http://dx.doi.org/10.1117/12.2663643.4

4.6 Discussion 

The results reported in Table 2 for the speed estimation model do not reflect the performance of this methodology in real 
world scenarios. It depicts the potential performance of our framework given an ideal tracker since it is trained on 
groundtruth annotations where all the tracked instances are true values not values predicted by a tracker. This methodology 
is sensitive to tracker performance. For illustration, consider an object with trajectory path of 3 consecutive frames. In a 
scenario where the tracker misses the intermediate frame, the pixel distance computed would be larger leading to larger 
predictions. To alleviate this dependence on tracker output, in the event of these misses this framework interpolates the 
missing frame’s coordinates as an augmentation strategy.  

The tracker was able to detect and associate vehicles outside the scope of the ground truth annotations particularly in the 
sunny scene, some of these outputs were suppressed to match the ground truth as closely as possible. However, this slightly 
reduced performance as shown in Table 5. 
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(a) (b) 

Figure 7 a) shows the bounding box on the ground truth annotations b) shows the predictions of the tracker and our 
model output. Certain regions not captured by the ground truth a) but captured by tracker b) some of these features 
are suppressed and the tag “no gt match” is used to represent some of these tracklets as seen in b). 

5. CONCLUSION AND FUTURE WORK 
This work introduces a simple yet effective, data-driven approach to speed and traffic density estimation that is adaptable 
to any multi-object tracker. This approach does not require meter-to-pixel mapping, prior road information, or other forms 
of rigorous calibration. It outperforms the existing approach across all scenes considered by a 73.4% reduction in MAE. 
Furthermore, to reduce the dependence and sensitivity of the proposed method on tracker performance, an augmentation 
strategy to forecast missing tracklet frames is introduced. As part of our future work, this model will be evaluated on more 
datasets, and image enhancement techniques will be explored to produce even better performance in poor weather 
conditions like haze, heavy rain, and fog to mention a few. Finally, a scale feature that could be used to generate a zoom 
factor will be incorporated into the model in training to add a penalization to tracked objects thereby regularizing the pixel 
features accordingly making it invariant to the effects of panning and zooming in real-world scenarios. 
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