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Part one: Classifying Reviews Sentiment with Bag-of-Words Features 
An outline of how I went about the project: 

- Exploratory analysis 
- Obtaining a Baseline Model 
- Preprocessing Pipeline 
- Logistic Regression Model 
- MLPClassifier Model 
- Support Vector Machine Classifier (SVC) 
- Summary of Best Performing Model 
- Cross-Validation and Leaderboard Comparison 

 
Exploratory Analysis 
I started off by carrying out some exploratory analysis on the dataset of single-sentence reviews, 
collected from three domains i.e., imdb.com, amazon.com, and yelp.com, the description of the 
dataset is given below:  

• x_train_df – (2400 by 2) where we have the first column representing the domain/website 
name and the second column is the review in text.  Meaning we 2400 single sentence 
reviews across the 3 domains. 

• y_train_df – (2400 by 1) this dataframe contains a binary label indicating sentiment, 1 for 
positive and 0 for negative sentiments. And we have 2,400 entries corresponding to the 
reviews in the x_train_df. 

 
For better analysis, I merged both dataframes i.e., x_train_df and y-train_df. After merging, I then 
split the merged dataframe into 3, and each of the 3 dataframes represents a domain. A summary 
of the exploration is given in the table below: 
 
  Table 1: Results of splitting dataframe into respective domains (training data) 

Domain Datapoints/Single-sentence Text 
Review Count 

Sentiment Breakdown 

Amazon 800 400 positive and 400 negative 
sentiments 

Imdb 800 400 positive and 400 negative 
sentiments 

Yelp 800 400 positive and 400 negative 
sentiments 

 
From the above distribution, we observe that the training dataset is equally distributed on all 
counts i.e., equal splits of 800 per domain and within each domain equal counts of positive and 
negative sentiment labels. 
 
 
 



 
 

For the testing data: 
• x_test – (600 by 2) where we have the first column representing the domain and the 

second column representing the single-sentence review of which we have 600 of these 
datapoints. 

Further exploration was also carried out on the testing data, since our target (objective) is to find 
its binary label representing each datapoints sentiment, we do not have a y_test (as it is what the 
project is to predict). The x_test data is also split into 3 dataframes where each dataframe 
represents a domain. A summary of the exploration is given in the table below: 
 
  Table 2: Results of splitting dataframe into respective domains (testing data) 

Domain Datapoints/Single-sentence Text 
Review Count 

Amazon 200 
Imdb 200 
Yelp 200 

 
Similarly, from the testing data distribution, we observe that the dataset is equally distributed 
across each domain with each domain having 200 reviews and the 3 domains summing up to the 
datapoint of 600 entries. 
 
The performance metrics considered for all models leverages 10-fold cross-validation with 
stratified sampling. Also, all results in the development of this project were obtained using 
stratified 10-fold cross-validation and the performance metrics considered are: 

- Error rate 
- Logistic Loss/Cross-Entropy Loss 
- Area Under the Receiver Operating Characteristic (AUROC)  

 
The stratified kfold cross-validation was used because it ensures that the proportion of the 
feature of interest (sentiment label) during each train, test split (fold) is the same as the 
original/complete dataset. This ensures that no value is over/under-represented in the training 
and test set, and it allows for more reliable performance estimates. An alternative to avoiding 
over/under-representation of the feature of interest would be to use the regular Kfold and set 
the shuffle argument to true. Both approaches produced almost identical results. 
 
Baseline Model 
A simple baseline model was built, which is a model built with defaults i.e., without any pre-
processing, or model hyper-parameter tuning with grid search or any other means. The baseline 
model serves as a means of comparison to other models to be explored. 
A stratified 10-fold cross-validation was used, to get a more reliable estimate of the training and 
testing (true) errors. In this case, since we have 2,400 data points/rows. The stratified 10-fold 
cross-validation is essentially 10 different models with each model having 2,160 training data and 
240 testing data and, in the end, the averages of the model performance metrics are obtained.  
This average of the 10 different models would give a more accurate idea of how the model would 
do in the real world as we have a more diverse and robust range of data distribution for each 
model to be averaged. 



 
 

Also, for each model, the train and test data preserve the original label proportion (as explained 
with the stratified kfold cross-validation). To build the baseline model, the default 
CountVectorizer() was used to generate the bag of words (BoW) features which produced 4,510 
features serving as the data which the default logistic regression model was built.  
The logistic regression model was used as the baseline because of its simplicity. 
The following results (averaged over 10-fold cross-validation) were obtained for the baseline 
model: 
 Table 3: Baseline Model Results 
 Training set Testing set Leaderboard 
Approach  Error Rate Log-Loss AUROC Error Rate Log-Loss AUROC Error Rate AUROC 
Baseline 0.0204 0.3902 0.9746 0.175 0.4887 0.8898 0.1833 0.8896 

 
The baseline performance values were not significantly different from the leaderboard perform
ance, indicating there is no overfitting. However, further exploration was carried out to further i
mprove the model.  
 
1) Preprocessing Pipeline 
It is worth mentioning that the Support Vector Classifier model along with the TfidfVectorizer 
worked best with the pipeline created. The preprocessing pipeline steps are outlined below:  

• Step 1 - Sentence Contraction and regular expression word substitution 
• Step 2 - Parts-of-speech (POS) Lemmatization 
• Step 3 - Building a tokenizer function for TfidfVectorizer () 

 
Sentence Contraction and regular expression word substitution 
This preprocessing step starts by expanding contractions, contractions are words or 
combinations of words shortened by dropping letters and replacing them with apostrophes e.g., 
“isn’t”, “we’ve” their expanded respective versions are “is not” and “we have”. This was done to 
produce more reasonable word tokens. For example, “we’ve” won’t be split into “we” and “ve” 
as “ve” does not really mean anything on its own compared to its expanded version “have”. 
This was implemented using the contractions library in python.  
The next thing that was done was to replace certain texts using regular expressions. This was 
done to reduce the bag of word features without compromising data by tagging similar texts to 
a word some examples are given below: 

• If a text starts with a dollar sign and contains a number, it would be tagged as ” money” 
• If a text starts with a number and ends with “pm”, “am”, “mins”, “hour”, “sec” etc. it 

would be tagged as “time”. 
• If a text starts with a number and ends with “lb”, “g “ or ”kg” etc. it would be tagged as 

“weight”. 
• If a text of numbers starts with either 1 or 2 and contains 2 more digits (making 4 

altogether) it would be tagged as “year” 
This also accounted for some slang like “bucks” tagging this slang to money. 
This preprocessing step reduced the bag of words (BoW) features obtained from the inverse 
document frequency (TfIdfVectorizer) to 4,418. 



 
 

Examples of some of these sentence transformations copied as-is from the preprocessed list and 
original training_text_list are given in the table below: 
 
Table 3: Preprocessing step 1 – Output from Applying Word Contraction and Regular Expressions 

Original Sentence Transformed Sentence 
'Waste of 13 bucks.' 
 

'Waste of money' 
 

'$50 Down the drain.' 
 

'money Down the drain' 
 

'At around time I buy it , at around time I 
start to watch  
 

"At around 4 pm I bought it, at around 8pm I started to watch
” 
 

 
Parts-of-speech (POS) Lemmatization 
Lemmatization was applied to group together different inflected forms of a word to their 
root/common word (by default, lemmatization just tags nouns). For, better lemmatization 
outputs, parts-of-speech tagging was used as lemmatization leverages context information to 
perform these word mappings. For example, the words “going”, “gone” and “went” would be 
mapped to “go”.  Unlike stemming that essentially just chops off parts of the word to achieve 
their root word mappings. The POS lemmatization was implemented using the 
WordnetLemmatizer from the nltk package.  
Examples of some of these sentence transformations after preprocessing steps one and two were 
applied, copied as-is from the preprocessed list and original training_text_list are given in the 
table below: 
 
Table 4: Preprocessing step 1 – POS Lemmatization Output 

Original Sentence Transformed Sentence 
"THAT one didn't work either." 
 

'THAT one do not work either' 
 

'Not impressed.' 
 

'Not impress', 
 

"Don't make the same mistake I did." 
 

 'Do not make the same mistake I do' 
 
 

 
This approach in addition to the first step further reduced the bag of words features to 3,870. 
 
Building a tokenizer function for TfidfVectorizer()  
The tokenizer function serves as the tokenizer argument to the TfidfVectorizer, this function 
implemented dictates how the words are tokenizer. The function takes in the training_text_list 
and first uses regular expression to parse words separated by space and replaces anything that 
is not a letter, number, hyphen, or a dollar sign. It then unifies every word to lower case and splits 
every word into individual items of a list. 
It then prunes out words that are less than two letters. It finally stems the output using the 
PorterStemmer library. This reduced the bag of word features to 3,524. The model performance 
was tested at each preprocessing stage using SVM Classifier (SVC) and is captured in table below: 



 
 

 
Table 5: Comparing Results of Preprocessing Steps on Base SVC Model  

  Training set Testing set Leaderboard 

Approach BoW Feature 
Size 

 Error Rate Log-Loss AUROC Error Rate Log-Loss AUROC Error Rate AUROC 

Baseline  4,510 0.0204 0.3902 0.9746 0.175 0.4887 0.8898 0.1833 0.8896 

Step 1 4,418 0.00565 0.0357 0.9989 0.175 0.4041 0.9009 0.17167 0.91162 
Step 1 + Step 2 
 

3,870 0.00694 0.04405 0.9987 0.1642 0.3857 0.9103 0.175 0.91045 

Step 1 + Step 2 
+ Step 3 

3,524 0.00829 0.04733 0.9986 0.1599 0.39063 0.9103 0.16167 0.9141 

- Step 1 - Sentence Contraction and regular expression word substitution 
- Step 2 - Parts-of-speech (POS) Lemmatization 
- Step 3 - Building a tokenizer function for TfidfVectorizer () 
 
From table 5, For the cross-validation results, we observe that leveraging all the preprocessing s
teps i.e., steps 1, 2, and 3 on the base SVC model gives the overall best performance, most gene
ralized performance on the cross-validation training and testing results, and on the leaderboard 
as well.  
On the training set, we observe that as we go through each step on the table the performance g
radually declines, as the error rate and log-loss gradually increase and the AUROC reduces. Whil
e on the testing set, the reverse happens (the model performance improves). This implies that t
he effect of overfitting gradually reduces as we gradually increase the preprocessing steps appli
ed and the model becomes more generalized.  
On the leaderboard, we see that applying all preprocessing steps gives the best leaderboard res
ult. However, using step 1 alone seems to give better leaderboard results compared to when st
eps 1 and 2 are applied. This inconsistency could be due to a higher tendency of overfitting of t
hese models.  
 
Also, n_gram and min_df parameters were explored on the preprocessed data. 
 
Increasing the min_df i.e., dropping out words based on how rarely they occur in documents. For 
example, when min_df is 2, we drop any number that occurs in less than two documents and so 
on. The min_df value was varied from 2 to 5 on the SVC base model. We see that increasing the 
min_df reduces the number of features in the BoW feature vector and as the number of features 
reduces, the training error rate also increased, the testing error rate increased in this trend as 
well. Underfitting occurres as min_df value was increased. Therefore the default min_df of 1 was 
used. 



 
 

 
 
 

 
 

                                               (a)       (b) 
Fig. 1 a) Training Error Rate Vs Min_df  b) BoW Feature Vector Size Vs. Min_df   
 
The n_gram value was also empirically tested. Along with the default unigrams, bigrams and 
trigrams were also considered. They produced promising results. However, not as good as the 
unigram as the bigrams and trigrams seem to overfit on the data and added more complexity by 
producing large feature vectors. The results are captured in the table below: 
 
Table 5: Comparing Results of n_grams 

   Training set Testing set Leaderboard 

N_gram BoW Feature 
Size 

Min_df Error Rate Log-Loss AUROC Error Rate Log-Loss AUROC Error Rate AUROC 

(1,1) 3,524 1 0.00829 0.04733 0.9986 0.1599 0.39063 0.9103 0.16167 0.9141 
(1, 2) 4,597 2 0.000417 0.0085 0.9997 0.1587 0.3777 0.9124 0.175 0.90626 

(1, 3) 5,985 2 0.000417 0.0076 0.9997 0.1604 0.38014 0.9113 0.172 0.909 

 
From the table, we see that the unigram gives a better error rate and AUROC performance on 
the leaderboard and gives almost the same results as the bigram and trigram on the testing set. 
However, on the training set, the bigram and trigram perform better which indicates some 
overfitting on the models built on the bigram and trigram. Due to the apparent overfitting of 
the bigrams and trigrams along with their complexity (as unigram as the most compact feature 
vector size). I decided to go with unigrams and min_df of 1. 
 
 
 
 
 
 
 
 
 
 



 
 

2) Logistic Regression 
To begin this phase of the project, the bag of words (BoW) feature vector obtained from the 
preprocessing pipeline explored above was used to build a default logistic regression model. To 
evaluate its performance on training and validation data, a stratified 10-fold cross-validation 
was used. The results are given in the table below: 
 

Table 6: Comparing Preprocessed BoW on Base Logistic Regression with Baseline  
  Training set Testing set Leaderboard 

Approach BoW Feature 
Size 

 Error Rate Log-Loss AUROC Error Rate Log-Loss AUROC Error Rate AUROC 

Baseline  4,510 0.0204 0.3902 0.9746 0.175 0.4887 0.8898 0.1833 0.8896 

Base Logistic Re
gression Model 

3,524 0.06722 0.3892 0.9724 0.1725 0.3892 0.90168 0.17833 0.90392 

 
Comparing the output of the logistic regression model built on the processed BoW pipeline, to 
the model built on the unprocessed BoW feature vector, we see an improvement in the testing 
set data and a slight decline in the performance on the training set. This indicates that the model 
built on the processed BoW pipeline generalizes better on new examples than the unprocessed 
version. These performance values were not significantly different from the leaderboard 
performance, indicating there is no overfitting. However, further exploration was carried out to 
further improve the model.  
 
Hyper-Parameter Tuning  
To refine and optimize the model, hyperparameter tuning was explored.  
The tuning was carried out via GridSearch to get the best possible model from a set of possibilities 
which include: 

- penalty: L1, L2, and elasticnet. 
- Solver: newton-cg, lbfgs, liblinear, sag, saga. 
- C:   ranging from 10-2 to 103 

These ranges of hyperparameter values were selected to keep models relatively simple, not so 
computationally expensive (particularly for the C values as too large C values overfit the model) 
and to be exhaustive in experimentation at the same time. 
From this set of possibilities, the output from grid search as the best hyperparameters was: 
 
C: 10.0, Penalty: L2, Solver: saga. 
 
This improved the model performance on the training and testing data (verified through stratifi
ed cross-validation) for all metrics except the testing AUROC. Where it is lower than the base lo
gistic regression model by 1x10-4 which is somewhat negligible. On the leaderboard, it performe
d better than both the baseline model and the base logistic model (i.e., the default logistic mod
el built on preprocessed data). As before, stratified 10-Fold Cross-Validation was carried out to 
evaluate model performance reliably. 
 



 
 

 
Table 7: Results of Logistic Regression Model on Hyperparameter Tuning 

  Training set Testing set Leaderboard 

Approach BoW Feature 
Size 

 Error Rate Log-Loss AUROC Error Rate Log-Loss AUROC Error Rate AUROC 

Baseline  4,510 0.0204 0.3902 0.9746 0.175 0.4887 0.8898 0.1833 0.8896 

Base Logistic Regres
sion Model 

3,524 0.06722 0.3892 0.9725 0.1725 0.4756 0.90168 0.17833 0.9039 

Logistic Regression 
Model + Hyperpara
meter Tuning GridS
earch 

3,524 0.01338 0.1618 0.9961 0.1717 0.40205 0.90156 0.17667 0.9056 

 
Hyper-Parameter Selection to Control Model Complexity and/or Tendency to Overfit 
The hyperparameters selected for varying and exploration are: 
1. The Inverse of Regularization Strength, C: This was selected because it controls the level of 

regularization applied, smaller C values specify stronger regularization on weights. 
 

2. Penalty/Norm of Penalty: This specifies the type of penalty norm applied to drive the weights 
towards 0 (or possibly to 0 in the case of L1 norm for low enough regularization strength or 
high enough C value). Available penalty values are on sklearn are: 
- L1 
- L2 
- Elasticnet 
- None 
 

3. L1-Ratio: This works only with the elasticnet penalty - which combines the L1 and L2 norm 
penalty. The L1-Ratio value ranges from 0 to 1 i.e.  0 <= L1_ratio<= 1.  

When L1_ratio is set to 0, we have the L2 penalty and when it is set to 1, we have the L1 penalty.  
When it is between 0 and 1. The penalty is a combination of L1 and L2. This hyperparameter was 
selected because it varies the penalty norm, essentially showing us what happens when we select 
either an L1 or L2 penalty and also when we combine them. 
 
To implement this, I wrote a python function that takes in the training data (x_train), the 
corresponding label data (y_train), and the range of hyperparameter values in a list. The function 
contains 2 for-loops. The first for-loop parses through the hyperparameter list and the second 
for-loop performs the stratified 10-fold cross-validation. Outside the first for-loop, empty lists are 
initialized and these lists correspond to the performance metrics we wish to track (error rate, log-
loss, AUROC). This list will essentially store the values of aggregated metric scores (average and 
standard deviation values) for each hyperparameter distinct value. 
Inside the first for loop, another set of empty lists is initialized, these lists get the training and 
testing performance metrics for every fold per hyperparameter distinct value and perform 
numpy averaging and standard deviation operations on this list after all iterations in the second 
for loop. These scalar values are then stored in the set of lists initialized outside the first loop by 



 
 

appending. The lists inside the first for-loop resets after each cross-validation loop cycle 
completes to capture the cross-validated performance metric of the next distinct 
hyperparameter value. After all iterations of both for-loops, the lists containing the aggregated 
metric values for every distinct hyperparameter value together with the original hyperparameter 
list are zipped and stored in a pandas dataframe. Each dataframe entry corresponds to the 
average and standard deviation (to estimate uncertainty) error, AUROC, and cross-entropy loss 
of training and validating data across the 10 folds for each value of the chosen hyperparameters. 
For every hyperparameter, this function is adjusted and re-used accordingly (this function is used 
for all hyperparameters explored for all models built in this project i.e the Logistic Regression, 
MLPClassifier, and SVC). 
An example of the pandas dataframe generated from the function is given in the image  below: 
   

 

 
    Fig 2: Results of Hyperparameter Variation 
 
The uncertainty of the results was estimated by obtaining the standard deviation across the 10-
fold cross-validation tests. For each of the 5 distinct values, stratified 10-fold cross-validation was 
applied and the standard deviation for each distinct value (corresponding to the standard 
deviation of the 10-fold cross-validation for said distinct hyperparameter value) was captured, 
and on average we have: 
 
Table 8: Results of Showing Standard Deviation on Average of Training and Testing Error (Logistic Regression) 

Hyperparameter Standard Deviation on Training Error 
Rate Results 

Standard Deviation on Testing Error Rate 
Results 

Inverse of Regularization Strength, C 0.02264 0.0383 
L1_Ratio 0.00394 0.0221 
Penalty 0.00206 0.0223 

 
The low standard deviation shows the average performance is relatively stable and consistent 
from one cross-validation test to another. 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 
 
Figures for the Tested Hyperparameters (Logistic Regression) 
From the dataframe returned by the function output, plotting the tested hyperparameter’s 
performance on at least 5 distinct values was possible, the plots for each parameter varied is 
given below: 

 

 

 
 
 

 
                                                (a)       (b) 
  

 
 
 
 
 
 
 
 
 
 
   
                

                      (c) 
Fig. 3 a) Training and Testing Error Rates vs. Inverse of Regularization Strength, C averaged across 10 folds for each distinct C 
value.  b)  Training and Testing Error Rates vs. L1_Ratio averaged across 10 folds for each distinct value L1_Ratio Value. c) 
Training and Testing Error Rates vs. Penalty Type averaged across 10 folds for each distinct penalty type.      
 
Observing the figures, starting with fig. 3a the inverse regularization strength against error rate, 
we see that at C = 0.0001 to C = 10.0, the model improves (as C is increasing the regularization 
on the weights becomes weaker and underfitting is reduced). The model performs best at C = 
10 (this supports the GridSearch results). However, as C increases to 100. We observe training 
error reduces while the testing error gets worse indicating overfitting at C = 100 and above. 
 
Also, for fig. 3b Varying the L1-ratio, we see that when the value of L1-ratio is 0.0 (this is 
equivalent to L2 norm) we have the best result and as we increase the L1-ratio value, the 



 
 

performance declines (training and testing error rates increase) and we have the worst 
performance on training and testing at L1-ratio = 1.0(which is equivalent to L1 norm). This also 
corroborates the results obtained from GridSearch. 
 
Finally, for fig. 3c varying the penalty types, is closely related to fig. 3b in interpretation. We 
observe that when the penalty is ‘none’ we have the best training error rate performance and 
one of the worst testing performances (high error rate). This strongly indicates that with no 
penalty applied we have overfitting. We have the best performance when the penalty is set to 
L2 norm which corroborates with fig(b) and the results obtained from GridSearch. 
 
 
3) Multilayer Perceptron (MLP) 
Carrying out the same analysis on a base MLP model using BoW feature vectors obtained from 
the preprocessing pipeline. To evaluate its performance on training and validation data, a 
stratified 10-fold cross-validation was used. The results are given in the table below: 
 

Table 9: Comparing Preprocessed BoW on Base MLP Model with Baseline  
  Training set Testing set Leaderboard 

Approach BoW Feature 
Size 

 Error Rate Log-Loss AUROC Error Rate Log-Loss AUROC Error Rate AUROC 

Baseline  4,510 0.0204 0.3902 0.9746 0.175 0.4887 0.8898 0.1833 0.8896 

Base MLP Model 3,524 0.00 0.0041 1.00 0.2092 0.7266 0.8777 0.2117 0.8739 

 
Comparing the output of the MLP model built on the processed BoW pipeline, to the baseline 
model, we see a decline in the testing set and leaderboard performance and we also see a 0-
error rate and AUROC of 1.0 on the training set strongly indicating overfitting (the base MLP 
Model does not generalize well on new data). The testing performance of both models is not 
largely different from the leaderboard performance.  
 
Hyper-Parameter Tuning  
To refine and optimize the model, hyperparameter tuning was explored.  
The tuning was carried out via GridSearch to get the best possible model from a set of possibilities 
which include: 

- Activation:  Logistic, Tanh, and Relu. 
- Hidden Layer Sizes: (50, ), (100, ), (50, 100), (150, ), (100, 10) 
- Alpha:   ranging from 10-2 to 103 

These ranges of hyperparameters were selected to keep models relatively simple, and not so 
computationally expensive, particularly in the case of hidden layer sizes. Values above this were 
too complex and made models built on them overfit. They were also selected to be exhaustive. 
From this set of possibilities, the output from grid search as the best hyperparameters: 

 
Activation = Tanh, Hidden Layer = (100, ), Alpha = 1.0. 
 



 
 

This improved the model performance on the training and testing data (verified through stratifi
ed cross-validation) for all metrics. On the leaderboard, it performed better than the baseline m
odel and the base logistic model, and base MLP model. As before, stratified 10-Fold Cross-Valid
ation was carried out to evaluate model performance reliably. 
 

Table 10: Result Exploring Hyperparameter Tuning on the MLP Model 
  Training set Testing set Leaderboard 

Approach BoW Feature 
Size 

 Error Rate Log-Loss AUROC Error Rate Log-Loss AUROC Error Rate AUROC 

Baseline  4,510 0.0204 0.3902 0.9746 0.175 0.4887 0.8898 0.1833 0.8896 

Logistic Regression 
Model + Hyperpara
meter Tuning GridS
earch 

3,524 0.01338 0.1618 0.9961 0.1717 0.40205 0.90156 0.17667 0.9056 

Base MLP Model 3,524 0.00 0.0041 1.00 0.2092 0.7266 0.8777 0.2117 0.8739 
MLP Model + Hyper
parameter Tuning 
GridSearch 

3,524 0.0346 0.2582 0.9898 0.1725 0.4188 0.9070 0.1667 0.9081 

 
Hyper-Parameter Selection to Control Model Complexity and/or Tendency to Overfit 
The hyperparameters selected for varying and exploration are: 
 

1. Alpha: This was selected because it controls the regularization term (on the L2 norm), 
Increasing alpha could fix overfitting (by encouraging smaller weights), and decreasing 
alpha could fix underfitting (by encouraging large weights). 

2. Hidden Layer Size: This was selected because this hyperparameter could significantly 
affect the model complexity and lead to overfitting (if the model is too deep) and also 
shallow models could trade off simplicity for performance (underfitting). 

 
The same function used by the logistic model to vary the hyperparameters was leveraged here 
to generate the pandas dataframe for visualization. 
 
Similarly, the uncertainty of the results was estimated by obtaining the standard deviation across 
the 10-fold cross-validation tests for each of the 5 distinct values for each hyperparameter. A 
summary is given in the table below: 
 
Table 11: Results of Showing Standard Deviation on Average of Training and Testing Error (MLP) 

Hyperparameter Standard Deviation on Training Error 
Rate Results 

Standard Deviation on Testing Error Rate 
Results 

Alpha 0.00125 0.02268 
Hidden Layer Size 0.001535 0.02331 

 
The low standard deviation shows the average performance is relatively stable and consistent 
from one cross-validation test to another. 
 



 
 

 
 
Figures for the Tested Hyperparameters (MLP) 
From the dataframe returned by the output, plotting the tested hyperparameter’s performance 
on at least 5 distinct values was possible, the plots for each parameter varied are given below: 
 
 

 
 
 
 
 
 
 
 
 
 
 
  

 
 
(a)                                                          (b)   

Fig. 4 a) Training and Testing Error Rates vs. Alpha averaged across 10 folds for each alpha distinct value.  b)  Training and 
Testing Error Rates vs. Hidden Layer Size averaged across 10 folds for each distinct value Hidden Layer Size.  
 
From fig. 4a, we see that a model with 0 error rate on training and a little over 0.2 on the testing 
set, at alpha = 0.001 as we increase alpha, the model seems to improve on the testing set and 
decline a training set at Alpha = 1.0, we have the best testing error rate performance (agreeing 
with GridSearch) and poorer but moderate training performance (indicating a more generalized 
model i.e. overfitting is reduced). Beyond Alpha = 1.0 However, the performance on both training 
and testing set declines. 
 
For fig. 4b, we see that selecting a hidden layer of (100,  ) gives the best performance (agreeing 
with GridSearch) and hidden layer sizes of (50, 100) and (100, 150) give the worst performance 
on testing and the best performance on training. This shows overfitting. For hidden layer sizes of 
(50, ) and (150, ) they give a moderate performance on training and testing. However, overall 
selecting a hidden layer size of (100, ) gives the best performance.  
 
4) Support Vector Classifier (SVC) 
The third model considered was a support vector machine classifier. Carrying out the same 
analysis on a base MLP model on BoW feature vector obtained from the preprocessing pipeline. 
To evaluate its performance on training and validation data, a stratified 10-fold cross-validation 
was used. The results are given in the table below: 
 

 



 
 

 
 
Table 12: Result of Base SVC Model 

  Training set Testing set Leaderboard 

Approach BoW Feature 
Size 

 Error Rate Log-Loss AUROC Error Rate Log-Loss AUROC Error Rate AUROC 

Baseline  4,510 0.0204 0.3902 0.9746 0.175 0.4887 0.8898 0.1833 0.8896 

Base SVC Model 3,524 0.00829 0.04733 0.9986 0.1599 0.39063 0.9103 0.16167 0.9141 

 
Comparing the output of the SVC model built on the preprocessed BoW pipeline, to the baseline 
model, we see a significant improvement in performance on the training and testing set on all 
performance metrics considered, we also see a significant improvement on the leaderboard. 
 
Hyper-Parameter Tuning  
To refine and optimize the model, hyperparameter tuning was explored.  
The tuning was carried out via GridSearch to get the best possible model from a set of possibilities 
which include: 

- The inverse of Regularization Strength, C:  ranging from 10-2 to 102 
- Gamma: ranging from 10-2 to 102 
- Kernel:   RBF, Poly, Sigmoid, Linear 

These ranges of hyperparameters were selected to keep models relatively simple. Values above 
these were too complex and started to overfit (particularly for C values). They were also selected 
to be exhaustive (for the case of kernel function). 
From this set of possibilities, the output from grid search as the best hyperparameters: 

C : 1.0, Kernel : RBF, Gamma: 1  
This improved the model performance on the training and testing on all metrics as verified thro
ugh stratified cross-validation (based on the training’s perfect metrics However, the model sho
ws signs of overfitting). On the leaderboard, it performed worse in terms of error rate and AUR
OC value, even performing worse than the base SVC model on the leaderboard. This could be d
ue to the model's tendency to overfit as can be observed in the training set performance.  
 

Table 13: Result Exploring Hyperparameter Tuning on the SVC Model 
  Training set Testing set Leaderboard 

Approach BoW Feature 
Size 

 Error Rate Log-Loss AUROC Error Rate Log-Loss AUROC Error Rate AUROC 

Baseline  4,510 0.0204 0.3902 0.9746 0.175 0.4887 0.8898 0.1833 0.8896 

Logistic Regression 
Model + Hyperpara
meter Tuning GridS
earch 

3,524 0.01338 0.1618 0.9961 0.1717 0.40205 0.90156 0.17667 0.9056 

Base SVC Model 3,524 0.00829 0.04733 0.9986 0.1599 0.39063 0.9103 0.16167 0.9141 
SVC Model + Hyper
parameter Tuning 
GridSearch 

3,524 0.00 0.010 1.0 0.1571 0.3706 0.9177 0.17 0.9158 



 
 

 
Hyper-Parameter Selection to Control Model Complexity and/or Tendency to Overfit 
The hyperparameters selected for varying and exploration are: 

1. The inverse of Regularization Strength, C: This was selected because it controls the level 
of regularization applied, smaller C values specify stronger regularization on weights. 
 

2 Kernel: This was selected because this hyperparameter could significantly affect the 
model complexity, the kernel function separates data meaningfully and this could 
sometimes lead to transformations of weights into higher dimensions. 
 

3 Gamma: This was selected because it serves as the kernel coefficient, the model tends 
to be sensitive to gamma, if gamma is too large the radius of influence of the support 
vectors would only support the vector itself and no amount of C will prevent overfitting 
and if gamma is too small the model gets too constrained that it cannot capture the 
data complexity/shape of the data. 

 
The same function used by the logistic and MLP models to vary the hyperparameters was 
leveraged here to generate the pandas dataframe for visualization. 
Similarly, the uncertainty of the results was estimated by obtaining the standard deviation across 
the 10-fold cross-validation tests for each of the 5 distinct values for each hyperparameter. A 
summary is given in the table below: 
 
Table 14: Results of Showing Standard Deviation on Average of Training and Testing Error (SVC)  

Hyperparameter Standard Deviation on Training Error 
Rate Results 

Standard Deviation on Testing Error Rate 
Results 

Inverse of Regularization Strength, C 0.0132 0.0259 
Kernel Function 0.00113 0.0229 

Gamma 0.02836 0.0121 
 
The low standard deviation shows the average performance is relatively stable and consistent 
from one cross-validation test to another. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
Figures for the Tested Hyperparameters (SVC) 
From the dataframe returned by the output, plotting the tested hyperparameter’s performance 
on at least 5 distinct values was possible, the plots for each parameter varied are given below: 
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                          (c) 
 
Fig. 5 a) Training and Testing Error Rates vs. Inverse of Regularization Strength, C averaged across 10 folds for each C distinct 
value.  b)  Training and Testing Error Rates vs. kernel function averaged across 10 folds for each distinct kernel function Value. c) 
Training and Testing Error Rates vs. Gamma averaged across 10 folds for each distinct gamma value.      
 
From fig. 5a, at C = 0.01 the model appears to underfit (meaning its stronger regularization on 
weights is applied) as we see a poorer performance in training and testing error rates. As we 
increase C the model starts to improve until we get to a C value of 1.0. Beyond this value, the 
model overfits as can be seen with the 0-error rate performance in training and the increasing 
error rate in testing. C =1.0 gives the best model performance. 
 
From fig. 5b exploring the kernels we observe that the RBF kernel gives the best and most 
generalized performance (with the lowest testing error rate and a moderate training error rate 



 
 

as well). The kernel poly, however, gives the worst performance as it is clearly overfitting the 
model with the best training performance and the worst testing performance. 
 
N.B: 5 distinct values could not be generated for the kernel as the 5th kernel available on sklearn 
called ‘precomputed’ only works with square matrix data which is not the case for the BoW 
feature vector which is 2400 by 3524. Therefore, this kernel could not be explored. 
 
From fig. 5c: we see that at gamma = 0.01, we have an underfit model and as we increase 
gamma up to 1 (which gives the best performance) the model improves. Beyond gamma as 1, 
the model gets worse (overfitting) as the testing error rate increases while the training error 
rate is 0. 
 
 
5) Models Summary 
In general, the support vector machine (SVM) classifier models explored give the best 
performance, better than the Logistic Regression Model and the MLP Model in all performance 
metrics considered (i.e., error rates, cross-entropy loss, AUROC) in the training and testing set 
and also on the leaderboard. 
Narrowing down between the SVM classifier models, the SVC model with hyperparameter tuning 
does perform better on the testing set and on the training set with a 0-error rate, 1.0 AUROC, 
and a cross-entropy loss of 0.01 on the training set which clearly indicates overfitting and the 
potential to generalize poorly on new examples when compared to the base SVC model. 
Therefore, I considered the base SVC model as the best-performing model. The results are 
captured in the table below: 
 
Table 15: Results of Models Explored 

  Training set Testing set Leaderboard 

Approach BoW Feature 
Size 

 Error Rate Log-Loss AUROC Error Rate Log-Loss AUROC Error Rate AUROC 

Baseline  4,510 0.0204 0.3902 0.9746 0.175 0.4887 0.8898 0.1833 0.8896 

Logistic Regression 
Model + Hyperpara
meter Tuning GridS
earch 

3,524 0.01338 0.1618 0.9961 0.1717 0.40205 0.90156 0.17667 0.9056 

MLP Model + Hyper
parameter Tuning 
GridSearch 

3,524 0.0346 0.2582 0.9898 0.1725 0.4188 0.9070 0.1667 0.9081 

Base SVC Model 3,524 0.00829 0.04733 0.9986 0.1599 0.39063 0.9103 0.16167 0.9141 
SVC Model + Hyper
parameter Tuning 
GridSearch 

3,524 0.00 0.010 1.0 0.1571 0.3706 0.9177 0.17 0.9158 

 
 
The SVC models performed best, though they seem to have the tendency to overfit as can be 
observed from their almost flawless performance in training compared to their testing 
performance. Comparing the SVC models, the base SVC model seems better at avoiding 
overfitting than the SVC model built via hyperparameter tuning. 



 
 

 
I further analyzed the results of the base SVC model. This was achieved by concatenating the 
y_train dataframe to the x_train dataframe and also generating predictions (based on the base 
SVC model) in an array and adding the predictions as a column to the concatenated dataframe. I 
then created a final column for error checking (naming it error bit). If the y_train value for a row 
and the corresponding prediction value are not equal assign a 1 to the ‘error bit’ column else 
assign a 0. This helped in filtering out the misclassifications. A summary of the errors is given 
below: 
 

Table 16: Quantifying Model Misclassifications by the Base SVC Model (Best Model) 
SVC Model Misclassification Count by Domain Total Misclassifications 
Base SVC Amazon = 9, IMDB = 24, Yelp = 15 48 

 
I could observe a pattern with the misclassifications, most of the misclassifications were due to 
context. Words that generally have negative meanings used in positive contexts were classified 
as negative sentiments by the model, some of these words “unfortunately”, “not”, 
“disappointed”,”terrible”. 
Some of the examples of misclassified examples from the training dataset are given in the table 
below: 

Table 17: Specific Misclassification Examples 
Text From Training Data Correct Label Predicted Label 
“The soundtrack wasn't terrible, either.” 1 0 
“I don't think you will be disappointed. 
” 

1 0 

“Not too screamy not to masculine but just 
right...” 
 

1 0 

“A film not easily forgotten.” 
 

1 0 

“The kids play area is NASTY!” 
 

0 1 

 
 
6.     Applying my best classifier, the base SVC model to the x_test.csv and storing the outcome 
as probabilistic predictions and submitting it to the leaderboard. The performance on the 
leaderboard is captured in the table below: 

 
Table 17:  Comparing Base SVC Model (Best Model) Cross-validation Results to Leaderboard Results   

  Training set Testing set Leaderboard 

Approach BoW Feature 
Size 

 Error Rate Log-Loss AUROC Error Rate Log-Loss AUROC Error Rate AUROC 

Base SVC Model 3,524 0.00829 0.04733 0.9986 0.1599 0.39063 0.9103 0.16167 0.9141 

 
The cross-validation performance is not significantly different from the leaderboard 
performance, the cross-validation testing error is 0.1599 (which corresponds to an accuracy of 
84.01%) and the leaderboard error rate is 0.1617(which corresponds to an accuracy of 83.8%). 
This is a difference of 0.00178 in error rate (0.00021 or 0.21% accuracy).  



 
 

In terms of AUROC also, the cross-validation performance and leaderboard performance are not 
largely different from the cross-validation result, 0.9103, and the leaderboard result, 0.9141 
differ by 0.0038. This implies that the model generalizes relatively well on new data and the slight 
difference in numbers might be because the test/leaderboard data might slightly vary in 
distribution. This analysis generally applies to all my leaderboard submissions of the different 
models explored. The submission ranked 5th in terms of error rate and 3rd in terms of AUROC. 


