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ABSTRACT 

Satellite imagery provides an efficient means of assessing and effectively planning search and rescue efforts in the 
aftermath of disasters such as earthquakes, flooding, tsunamis, wildfires, and conflicts. It enables timely visualization 
of buildings and the human population affected by these disasters and provides humanitarian organizations with crucial 
information needed to strategize and deliver the much need aid effectively. Recent research on remote sensing 
combines machine learning methodologies with satellite imagery to automate information extraction, thus reducing 
turn-around time and manual labor. The existing state-of-the-art approach for building damage assessment relies on 
an ensemble of different models to obtain independent predictions that are then aggregated to one final output. Other 
methods rely on a multi-stage model that involves a building localization module and a damage classification module. 
These methods are either not end-to-end trainable or are impractical for real-time applications. This paper proposes 
an Attention-based Two-Stream High-Resolution Network (ATS-HRNet), which unifies the building localization and 
classification problem in an end-to-end trainable manner. The basic residual blocks in HRNet are replaced with 
attention-based residual blocks to improve the model's performance. Furthermore, a modified cutmix data 
augmentation technique is introduced for handling class imbalance in satellite imagery. Experiments show that our 
approach significantly performs better than the baseline and other state-of-the-art methods for building damage 
classification. 

Keywords - building damage assessment, convolutional neural network, deep learning, semi-supervised learning, 
xBD dataset, attention module, selective oversampling, pixel-aware cutmix. 

 

1. INTRODUCTION 

The significant effects of climate change are observable on the environment. Climate change effects such as rise in 
global temperatures, droughts, rising sea levels, intense tornados, earthquakes, and hurricanes,  have been projected 
to worsen over the coming decades [1]. Furthermore, man-made disasters are increasing due to sustained conflicts 
between communities, rising acts of terrorism, and accidents. The World Health Organization-WHO estimates that 
over 160 million people are affected by natural disasters, with around 90,000 killed every year [2]. Therefore, there is 
a  dire need to develop effective and efficient means of providing a rapid and accurate assessment of damages caused 
by such natural disasters. Intuitively, damages to buildings provide a good insight into the number of victims in the 
aftermath of a disaster. By estimating the extent of damages to buildings, the number of affected individuals can be 
projected. Such information would be critical for emergency responders to plan and deploy resources to affected areas 
more efficiently, hence,  reducing deployment time and, in turn, minimizing casualties. 

Very High Resolution (VHR) remote sensing data provides a low-cost and efficient way to visualize affected areas' 
structural and spatial characteristics. It also provides sufficient information needed by computer vision algorithms to 
extract features for automating the process of assessing damages caused by disasters [3]. Aside from VHR, Synthetic 
Aperture Radar (SAR) data containing information about backscatter and phase contents can also be used to detect 
damaged buildings [4], [5], [6]. Although SAR data are not affected by inference from clouds and shadows, they can 
be quite noisy and do not contain any color information [7]. This limitation makes VHR data preferred for disaster 
exploration. 
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Several methods have been proposed to take advantage of remote sensing data for detecting buildings and generating 
building damage maps. Tong et al. proposed a way for detecting collapsed buildings due to earthquakes using pre- 
and post-seismic high-resolution satellite stereo imagery [8]. This is attained using geometric changes in the height of 
the buildings using the pre- and post-seismic stereo image pairs. Tong et al. further improved this method by proposing 
a hybrid shadow-analysis approach [9]. It involves establishing the 3D model of the building model using the height 
data and estimating the overlap between the ground shadow polygon and the casting shadow area of the building. Hua 
et al. adopted an online clustering algorithm for grouping the buildings' extracted motion and appearance features for 
detecting collapsed buildings from UAV data [10]. These methods are often ineffective because they require carefully 
handcrafted features and are binary in classification, i.e., they consider either damaged or undamaged buildings. 
Change detection techniques have also been proposed to estimate the pixel level differences between pre- and post-
image pairs [11]. Although this provides a simple mathematical approximation of changes, it doesn't consider the 
contextual information in the changes detected. 

2. RELATED WORK 

Advancements in the field of machine learning, especially the use of convolutional neural networks (CNNs) for feature 
extraction [12], have paved the way for proffering breakthrough solutions for several computer vision-related 
problems. State-of-the-art results have been obtained using CNNs for object detection [13]–[15], image recognition 
[16], [17], semantic segmentation [18], [19] and instance segmentation [20]. Xu et al. investigated the generalizability 
of CNNs for automating the detection of damaged buildings in satellite imagery [21]. Fujita et al. also explored the 
effectiveness of CNNs on buildings affected by tsunamis from aerial images [22]. This is done by assigning a label to 
a post-disaster image using a Siamese-like network [23] which takes a pair of input images of an area before and after 
a disaster. 

Fully convolutional networks (FCNs) have also been adopted for change detection tasks. The most common network 
has been U-Net-based [24]. This is because, by design, the U-Net architecture is capable of extracting multi-level 
patterns across different spatial regions of an image and combining them into high-resolution features, thus allowing 
for more precise localization of regions of interest. Sun et al. proposed a multitask learning framework for change 
detection using FCNs for detecting building changes in VHRs [25]. Bayramli et al. proposed shadow detection using 
U-Net for improving damage detection [26]. Although these methods achieved good results, they often lose spatial 
context when making predictions. To overcome the challenges of series-connected networks such as U-Net and 
residual networks [16], Wang et al. proposed deep high-resolution networks (HRNet) [27]. This model architecture 
maintains a high-resolution representation throughout the network by connecting the high-to-low resolution 
convolution streams in parallel and repeatedly exchanging features across resolutions, thus, making them suitable for 
position-sensitive (spatially precise) tasks such as semantic segmentation, pose estimation, and object detection [28]. 

This paper is motivated by the development of Dual-HRNet by Koo et al.1 and extends the framework proposed in 
[28] but with two major changes that significantly improve the performance of our two-stream architecture for joint 
building localization and classification in satellite imagery. These contributions include: 

1. Incorporate an attention mechanism in the HRNet blocks to improve the network's representation capacity 
for improved building detection and damage classification.  

2. Introduce a modified Cutmix [29] strategy called Spatial (pixel) aware cutmix and a class-based 
oversampling technique to resolve the xBD dataset's severe class imbalance issue. 

The rest of the paper is organized as follows. Section 3 presents a detailed description of the proposed methodology 
and the objective functions adopted. Section 4 provides the experimental setup and results. Finally, the conclusions 
and future work are presented in section 5. 

 

 

 
1 https://github.com/DIUx-xView/xView2_fifth_place 
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3. PROPOSED METHOD 

Feature extraction using a convolutional neural network has proven to outperform conventional feature extraction 
strategies for image and video data. Several CNN architectures have been created for learning representations for 
computer vision-related problems such as object detection, semantic segmentation, pose estimation, etc. U-Net and 
Hourglass-style networks are designed to include an encoder that includes fully or dilated convolutional networks for 
learning low-resolution representations and a decoder that performs feature upsampling to gradually recover high-
resolution representations from its low-level representations. The decoder is often a mirror image of the encoder, and 
multi-scale fusion is performed with skip connections and concatenation of the low- and high-level features [27]. 
These networks are often designed to be series-connected, and the subnetworks of high-to-low and low-to-high 
representation learning could result in information loss. High-resolution networks are designed to maintain a high-
resolution representation throughout the network, making them suitable for position-sensitive tasks like semantic 
segmentation. Therefore, HRNet is adopted in our model architecture with some key modifications to improve the 
capabilities for learning better representations from satellite imagery. 

Figure 2 shows the proposed framework, which comprises two network streams. The first stream takes the pre-disaster 
images, and it is responsible for localizing the buildings in the images. The second stream takes the corresponding 
post-disaster images and classifies them into different damage levels. Weights are shared between the two streams 
between each stage of the HRNet via cross-feature fusion proposed by [30].  

3.1. Attention-Guided HRNet 

The proposed AG-HRNet model replaces the residual blocks in the original HRNet with attention-based residual 
blocks. The visual attention modules exploit inter-spatial and inter-channel relationships of features from each stage 
to extract spatial and channel maps. The channel attention maps extract features that are considered “meaningful,” 
while spatial attention maps extract features that are considered as “informative” [31], [32]. 

 
(a) 
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(b) 

Figure 1: (a) Original high-resolution network architecture [27] (b) Attention-guided high-resolution network (AG-HRNet) 
inspired by the work of Liu et al. [33]. 

 

3.2 Two-Stream Attention-Guided HRNet  

Our network comprises of two AG-HRNet models, the first stream takes as input a pre-disaster image and localizes 
all buildings in the satellite image, while the second stream takes as input a post-disaster image pair and classifies the 
extent of damages on the localized buildings. The criss-cross attention module (CCAM) proposed by Huang et al. [34] 
is incorporated in each network stream for extracting contextual information from the images. 

 

(a) 
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(b) 

Figure 2: (a) Attention-guided Two-Stream HRNet for joint building localization and classification. Motivated by the work of 
Koo et al. 2 (b) Criss-Cross Attention Module (CCAM) [34]. 

 

3.3 Pseudo-Label Generation 

Similar to our prior work for building classification [28], a semi-supervised approach is explored for harnessing 
information from unlabeled data. The number of unlabeled samples is frequently bigger than the labeled data. Also, 
building types differ substantially between areas and continents due to the climate or the culture of the people who 
reside there. Semi-supervised learning allows for the collection of vast volumes of previously unknown data from 
various places, enhancing the generalizability of existing models to different building types. According to the JDS 
standard, these labels comprise the location of the structures and the accompanying label (see table 1). To remove 
noisy labels and improve the limits of the segmentation masks, label refinement is used. Label refining is done using 
a consistency-based method. The input images are subjected to four spatial level transformations: horizontal flip, 
vertical flip, transposition, and rotation, with the trained model utilized to localize and categorize buildings in each 
transformation. The inverse transform is applied to obtain the final output, and the most frequent class from all five 
outputs, including the findings from the untransformed picture, is determined. The results show that using a simple 
semi-supervised pipeline improves our model's performance on labeled and unlabeled data. A simple process for 
creating pseudo-labels is investigated for our task. The pseudo labels are generated using an ATS-HRNet model 
trained on the annotated datasets. Figure 3 shows the overall framework for extracting pseudo-labels. 

3.4 Objective function 

The objective function adopted is a weighted combination of a supervised loss LS-CLS and a semi-supervised 
loss LSSL-CLS. For the localization step, a weighted binary cross-entropy loss (Lloc) is adopted for training the network. 
This provides a weighting function for the two-class problem, i.e., building vs. nonbuilding.  

𝐿!"# 	= 	−	(𝛼	 ∗ 	𝑦𝑙𝑜𝑔(𝑦,) 	+	(1	 − 	𝑦)𝑙𝑜𝑔(1	 −	𝑦,))      (1) 

𝛼 is set to 1.5 to assign higher weights for positive classes. 

The classification loss is a weighted combination of the multi-label cross-entropy loss (Lmce) and the dice loss. The 
dice loss (LDL) assesses the overlap between two regions and improves the ability of the model to generate finer 
boundaries for the segmentation task. As shown in equation 3, the numerator evaluates the overlap between the two 
regions at a local scale. At the same time, the denominator considers the total number of boundary pixels on a global 
scale3. 

 
2 https://github.com/DIUx-xView/xView2_fifth_place 
3 https://medium.com/ai-salon/understanding-dice-loss-for-crisp-boundary-detection-bb30c2e5f62b 
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Figure 3: Pseudo-label generation pipeline takes a pair of pre- and post-disaster images and generates pseudo-labels of each 

pair [28]. 

 

𝐿$#% 	= 	−	0𝛼#𝑦(𝑐)	𝑙𝑜𝑔	𝑝(𝑐)
&

#'(

							(2) 

𝐿)* 	= 	
2|𝑋	 ∩ 	𝑌|
|𝑋| 	+	|𝑌|																																	(3) 

Where,  
X and Y are the ground truth and predicted label, respectively, 
𝛼# = 0.5, 1.5, 1.0, 1.0 for class labels no damage, minor damage, major damage, destroyed. 
y(c) and p(c) are the ground truth and predicted labels, respectively. 

The classification loss is, therefore, 

𝐿+,-*+ 	= 	 𝐿$#% 	+ 	𝛽𝐿)*																				(4) 

The total loss when training with unlabeled data 

𝐿."./! 	= 	 𝐿+,-*+ 	+ 	𝛾𝐿++*,-*+										(5) 

𝐿++*,-*+ is same as 𝐿+,-*+ but computed separately on the pseudo-generated labels. 

 

4. EXPERIMENTS AND RESULTS 
 

4.1 xBD Dataset 

The xBD dataset [35] is a large-scale public dataset released alongside the xView2 Challenge [36] to advance 
humanitarian assistance and disaster recovery research. It provides a large number of annotated image pairs for change 
detection and building damage assessment. It comprises 850,736 annotated buildings covering 45,362 km2 of imagery 
and covers a diverse set of disasters across multiple geographical locations. Figure 4 shows image samples from the 
xView2 dataset, and Table 1 presents the original paper's explanation of the Joint Damage Scale (JDS) for categorizing 
building damage for the xBD dataset. 
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Figure 4: Sample image pairs from the xBD dataset (a) and (b) are pre- and post-disaster images from tornadoes, (c) and (d) 
and pre- and post-disaster images from hurricane Harvey. 

 

Table 1: Joint Damage Scale Descriptions [35] 

Damage level Structure Description 
0 (No damage) Undisturbed. No sign of water, structural or shingle 

damage, or burn marks. 
1 (Minor damage) Building partially burnt, water surrounding structure, 

volcanic flow nearby, roof elements missing or visible 
cracks 

2 (Major damage) Partial wall or roof collapse, encroaching volcanic 
flow, or surrounded by water/mud 

3 (Destroyed) Scorched, completely collapsed, partially/completely 
covered with water/mud, or otherwise no longer 
present 

 

The xBD dataset comprises three folders, as shown in Table 2. The image pairs from the Train and Tier3 folder 
combined to form the training and validation set. The split used was 95% training and 5% validation. The images on 
the held-out folder were used for our model evaluation. 

Table 2: Size of xBD dataset 

Folder Number of image pairs 
Train 2799 
Tier3 6369 
Held-out 933 

 

 

a b c d 

No damage Minor damage Major damage Destroyed 
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4.2 Data Preprocessing 

Two major steps are taken when preprocessing the xBD and Inria datasets: 

i. Images and labels in the xBD dataset are of size 1024 x 1024, while the Inria datasets are 5000x5000. 
Because the input resolution of our network is 512x512, each image and label pair are cropped into non-
overlapping patches of 512x512. 

ii. Image pairs in which the pre-disaster contains no buildings or less than three small buildings are removed 
from the training dataset. This ensures that the model isn't fed a large number of images with no useful 
training information. 

After the preprocessing stage, the number of image pairs in the train and tier3 folders was reduced to 2096 and 2833, 
respectively. 

4.3 Data Augmentation 

Figure 5 shows the distribution of the classes for the post-disaster images in the xBD dataset. The plot shows a severe 
class imbalance with the combined number of buildings with no damages being 10x more than any other class hence 
the need for a data preprocessing step to reduce the effect of this imbalance on the model's performance. This would 
prevent the network from being biased towards dominant classes. 

 
Figure 5: Chart of building damage class distribution for train and tier3 folders images. The number of buildings with no 

damages is significantly higher than the other three classes. 

Having reduced the size of the dataset to contain images with needed training information, an additional augmentation 
strategy is explored for improving our model’s performance. CutMix [29] strategy involves cutting and pasting patches 
among training images. Shen et al. [37] adopted CutMix for data augmentation by performing the cut and paste 
strategy on random samples from the training set. Although the same strategy is adopted, a check is performed to 
ensure CutMix is only performed for post-images with very few buildings. We also ensured that the cut images were 
from image regions with several building damage classes present. Figure 6 shows the pipeline for our modified CutMix 
augmentation strategy.  

Images with few buildings and annotations are selected from the training set, and this includes the pre- and post-image 
pairs 𝑋0

12% , 𝑋0
1"3. and its corresponding label, YA. The number of patches needed, N is computed, and N random 
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samples of densely annotated image pairs are selected for extracting N patches which are used to create the new image 
pairs 𝑋>0

12% , 𝑋>0
1"3. and label 𝑌>0. The augmented dataset generated using this strategy will be provided here4. 

 

 
Figure 6: Data augmentation pipeline using our modified CutMix strategy 

Figure 7 shows image samples from SA-CutMix-ed data. SA-CutMix is able to preserve most of the information 
contained in the original images while randomizing the number of image patches needed for copy-pasting. 

4.4 Evaluation Metrics 

Evaluation is performed on the 933 pre- and post-image pairs on the held-out data from the xBD dataset. The F1 score 
provides a metric for evaluating the performance of our model. The F1 score is adopted to evaluate the model’s 
localization and classification tasks performance. It takes into account four important values; the true positive value 
(TP) represents the number of pixel classes that are correctly classified, true negative value (TN) represents the number 
of negative classes correctly classified, false-positive value (FP) is the number of negative classes misclassified as a 
positive and false negative value (FN) is the number of positive classes misclassified as negative. These metrics are 
shown in equations (1) – (4). Equation (5), 𝐹1#!3, is the harmonic mean of class-wise damage classification F1. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = 	
𝑇𝑃

𝑇𝑃	 + 	𝐹𝑃																								(6) 

𝑟𝑒𝑐𝑎𝑙𝑙	 = 	
𝑇𝑃

𝑇𝑃	 + 	𝐹𝑁																															(7) 

 

 
4 https://drive.google.com/drive/folders/1ksNiTChUy2ikFbUhCHioJk1_24_aDkbc?usp=sharing 
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Figure 7: Visualization of the image pairing using the proposed SA-CutMix technique. Images in this figure are illustrative 
examples of pre- and post-image pairing. (a) and (b) are two separate examples. The first two columns for each example 

represent the pre-and post-disaster images and the corresponding labels, while the third and fourth columns illustrate the post-
disaster images and associated labels. 

𝐹1!"# 	= 	2	𝑥	
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑥	𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 + 	𝑟𝑒𝑐𝑎𝑙𝑙 												(8) 

𝐹1!"# 	= 	
2𝑇𝑃

2𝑇𝑃	 + 	𝐹𝑃	 + 	𝐹𝑁																						(9) 

𝐹1#!3 	= 	
𝑛

∑ 1
𝐹1-!

4
5'(

																																							(10) 

(
6("!

 denotes the F1 score of each damage level (Ci) for damage assessment. Due to the tendency of the F1 score to 

heavily penalize over-represented classes, the overall score, F1s provides a more comprehensive evaluation metric for 
building segmentation and damage assessment [35]. 

𝐹13 	= 	0.3	𝑥	𝐹1!"# 	+ 	0.7	𝑥	𝐹1#!3													(11) 

 

(a) 

(b) 
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4.5 Implementation Details 

Training, validation, and testing were carried out on an Nvidia RTX 3090 GPU. A Stochastic Gradient Descent (SGD) 
optimizer [38] with a base learning rate of 0.01, the momentum of 0.9, and weight decay of 0.0005 is used for model 
optimization. For training, the batch size was set to 24, and the batch size for testing was set to 16. The weights for 
the two HRNet V2 (C=48) used in the localization and classification streams are initialized with ImageNet pretrained 
weights5 , and the convolution layers in the feature fusion block are randomly initialized. The algorithm is 
implemented using the Pytorch deep learning framework [39]. 

4.6 Results 

Table 3 shows the quantitative evaluation of the performance of ATS-HRNet to other state-of-the-art approaches. 
Figure 8 and Figure 9 show the results for localization and classification of building damage on a subset of the held-
out data containing groundtruth annotations. Images shown in Figure 8 are selected from different regions, with 
different disaster types, building density, and class of building damage. ATS-HRNet + proposed SA-CutMix 
significantly outperforms the baseline model as well as other joint localization and classification models. 
 

Table 3:  Quantitative comparison of F1 scores with other methods. Results show that ATS-HRNet + SA-
CutMix outperforms the baseline method. 

 Overall 

score 

Localization  No damage Minor 

damage 

Major 

damage 

Destroyed 

xBD baseline 0.265 - 0.663 0.144 0.009 0.466 

Weber and 

Kane [40] 

0.741 0.835 0.906 0.493 0.722 0.837 

TS-HRNet 0.645 0.836 0.857 0.370 0.664 0.774 

TS-HRNet + 

SSL 

0.745 0.849 0.910 0.528 0.751 0.790 

ATS-HRNet 0.756 0.880 0.920 0.629 0.782 0.864 

ATS-HRNet + 

SA-CutMix 

0.778 0.892 0.928 0.640 0.796 0.875 

 

 

 

 

 

 

 

 
5 https://github.com/HRNet/HRNet-Image-Classification/blob/master/README.md 
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Figure 8: Localization and classification results for five disaster types. The buildings are colored based on the damage type and 
color mapping in figure 1. The results shows that the ATS-HRNet still outperforms TS-HRNet trained with pseudo-labels. 
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Figure 9: Localization and classification results presenting the benefits of SA-CutMix as a data augmentation strategy. These 
results show that SA-CutMix helps reduce the amount of misclassified building damages and force finer label assignment. 
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5. CONCLUSION AND FUTURE WORK 

This paper introduces a modified Cutmix strategy for effective data augmentation and an attention-guided high-
resolution network (ATS-HRNet) for joint building localization and damage classification. Furthermore, a semi-
supervised approach for improving the model’s performance for the localization and classification tasks using a set of 
unannotated is also presented. Our ablation experiments on the xBD demonstrate the effectiveness of the augmentation 
strategy and ATS-HRNet for effectively localizing buildings of various types and for damage classification. The 
model’s performance is also compared to current state-of-the-art approaches, and the results show that ATS-HRNet + 
SA-cutmix significantly outperforms other methods across all building damage levels.  

Model evaluation for building localization on the xBD dataset still shows some limitations of our strategy. Building 
styles vary significantly across regions and cultures; hence, it is impractical to account for the vast variability in 
building structures. As part of the future work, we will be training our framework on more datasets targeted towards 
building localization from satellite imagery across more regions, such as the African building dataset provided by 
Sirko et al.  [41], to fully evaluate the potential of the proposed approach. 
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