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 10 
Summary 11 
Pose estimation predicts anatomical landmarks in humans and animals from monocular images or 12 
videos. Animal Pose Estimation is crucial for monitoring locomotion, behavior, and activity 13 
recognition, playing a key role in wildlife conservation. Single species pose estimation studies 14 
capture features unique to the species but generalize sub-optimally, while multi-species studies 15 
provide broader generalization by assuming fixed keypoints for all quadrupeds, this 16 
oversimplification fails to capture unique anatomical traits in animals such as elephants. To 17 
harness the strengths of single-species and multi-species pose estimation, we present QuadPose, a 18 
framework that standardizes skeletal structures across datasets and improves generalizability 19 
through consistency-dependent pseudo-labelling. Additionally, JumboPose, a manually annotated 20 
dataset of 2,078 African elephant images with 33 keypoints tailored to their unique morphology is 21 
introduced. Extensive evaluations demonstrate the effectiveness of QuadPose for animal pose 22 
estimation. This work establishes a foundation for standardized, cross-species pose estimation, 23 
advancing applications in wildlife conservation, and veterinary research. 24 
 25 
Introduction 26 
The field of computer vision has tremendously benefited from advances in machine learning. 27 
State-of-the-art methods for object detection1,2,3,4, recognition5, segmentation6,7,8,9,10 and pose 28 
estimation11,12,13,14,15,16,17 adopt deep neural network frameworks, such as convolutional neural 29 
networks18,5 and transformer-based architectures19,20 for feature extraction. Pose estimation 30 
involves identifying and localizing anatomical keypoints such as elbows, wrists11 within an image 31 
or video. Pose estimation methods are generally categorized into top-down21 and bottom-up22,23 32 
approaches. The top-down approach involves using a detector model1,2,24,25,26 to isolate regions of 33 
interest in the image by obtaining a set of coordinate locations for each detected object and 34 
subsequently performs single-person pose estimation. The bottom-up approach does not require a 35 
separate detector; instead, it directly predicts keypoints all at once, followed by an association step 36 
that groups them into full poses for each individual27,28,29. 37 

Practical applications that require pose estimation as a critical step include behavior 38 
understanding, human-object interaction, and activity recognition. The availability of large-scale 39 
datasets, such as COCO30, OCHuman31 and MPII32, has been a driving force behind advancements 40 
in human pose estimation (HPE). Despite advances in HPE, progress in animal pose estimation 41 
(APE) remains limited. A major challenge is the lack of large-scale, labeled datasets that 42 
comprehensively represent diverse animal species. Without standardized datasets and robust 43 
models, APE systems struggle to accurately track animal movement, monitor health conditions, 44 
and support conservation efforts in real-world settings. To address this, several datasets have been 45 
created for specific quadrupeds, with annotations tailored to their anatomical structure. These 46 
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include datasets for tigers33, horses34, macaque35, and zebra36.  Multi-species datasets, such as 47 
Animal-Pose37 and AP-10K38 with five and fifty-four animal species respectively, aim to capture 48 
broader quadruped similarities. These datasets have gained traction in wildlife conservation 49 
research. However, annotation styles and skeletal structures across these APE datasets vary. These 50 
differences include the number and placement of keypoints, inconsistent naming conventions, and 51 
varying anatomical definitions. These discrepancies reduce knowledge transferability in large-52 
scale cross dataset learning. Despite these inconsistences, the shared anatomical similarities among 53 
quadrupeds present an opportunity to standardize and consolidate images and labels across most 54 
of these datasets into a unified framework, leveraging common features across species. These 55 
anatomical similarities can be extended to out-of-domain classes to improve the model’s 56 
generalizability to unseen animal species.  57 

Another challenge worth addressing is the failure of existing datatsets37,38,35,33,36,34 to 58 
capture critical keypoints in certain quadrupeds, such as elephants, which have unique features not 59 
shared by other species, including trunks, large ears, and tusks.  This underscores the need for a 60 
framework capable of reliably estimating poses for quadruped species with distinct morphologies, 61 
such as elephants, while also generalizing effectively to other quadrupeds.  62 

This work, introduces QuadPose, a unified framework for animal pose estimation that 63 
enables accurate, species-specific predictions for elephants while improving generalization across 64 
diverse quadrupeds. To address the lack of datasets capturing the unique morphology of elephants, 65 
we propose JumboPose, a large-scale dataset dedicated to elephant pose estimation, featuring 66 
2,078 manually annotated images with 33 anatomically relevant keypoints.  67 

QuadPose formulates APE as a multi-task learning problem, standardizing pose estimation 68 
into two data representations: one tailored specifically for African elephants and another 69 
encompassing all other quadrupeds, implemented as a dual-head prediction network. Our 70 
framework is developed based on top-down state-of-the-art architectures, including HRNet18 with 71 
polarized self-attention39, ViTPose40, and TransPose41, and incorporates a binary classifier that 72 
dynamically routes input data to the appropriate prediction head. Additionally, we introduce a 73 
pseudo-labeling strategy that leverages shared anatomical features to enhance generalization to 74 
unseen animal species. Extensive evaluations demonstrate that QuadPose achieves state-of-the-art 75 
performance, with mAP scores of 81.5, 85.7, and 94.3 on Animal-Pose, AP-10K, and JumboPose, 76 
respectively. By standardizing skeletal structures and leveraging multi-task learning, QuadPose 77 
not only enhances species-specific accuracy but also improves cross-species generalization. This 78 
framework establishes a new benchmark for scalable and robust animal pose estimation, paving 79 
the way for broader applications in wildlife conservation, behavioral analysis, and veterinary 80 
science. In particular, these capabilities hold significant potential for monitoring free-roaming 81 
wildlife populations, enabling automated censusing by age-sex class and facilitating the remote 82 
detection of sick or injured individuals. Such advancements are crucial for improving conservation 83 
efforts and ensuring timely interventions in challenging field environments. 84 

 85 
Results 86 
QuadPose employs a three-phase training strategy designed to improve pose estimation across 87 
quadrupeds. First, a data standardization step maps input data into two categories: elephants and 88 
other quadrupeds. Phase 1 uses a curriculum training approach on manually annotated data. Phase 89 
2 generates high-confidence pseudo-labels based on the model’s initial predictions. Finally, Phase 90 
3 applies a typical concurrent training approach, integrating both manually annotated and pseudo-91 
labeled data for refinement (Fig. 1a). Below, we detail the datasets used to train QuadPose. 92 
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 94 
Figure 1 Overview of the QuadPose framework. a. Schematic representation of the three-phase training 95 
pipeline. The teacher model is first trained using manually labeled data (Phase 1), then the learned 96 
parameters are used to generate high confidence pseudo labels from unlabeled data (Phase 2), and finally, 97 
a student model is trained using both manually and pseudo labeled data. b. Architecture of the QuadPose 98 
model, which is based on ViTPose40, HRNet39 and,  TransPose41 model backbones. The model head is 99 
modified into dual prediction heads, first head is a convolutional layer that outputs 33 joints and second 100 
head is a convolutional layer that outputs 20 joints. c. Proposed Elephant Dataset, JumboPose, manually 101 
labeled dataset of 2,078 African elephants with 33 keypoints along with keys for the labelling scheme. 102 
Colored text highlight auxiliary keypoints unique to elephants. 103 
Training Data 104 
The QuadPose framework (Fig. 1b), standardizes data into two formats: one for elephants 105 
(JumboPose, Fig. 1c) and another for other quadrupeds. JumboPose, adapted from the  ELPephants 106 
dataset 42 was originally developed for elephant Re-identification, while the other quadruped 107 
dataset integrates annotations from over 50 species across multiple sources. In phase 1, the teacher 108 
model is trained using 18,212 images from Animal-Pose37, AP-10K38, and JumboPose. Phase 2 109 
expands training samples by generating pseudo-labels from 53,600 unlabeled images across eleven 110 
datasets (see Methods). Finally, Phase 3 utilizes over 71,000 images from the previous phases for 111 
the student model training. Model weights from the teacher (phase 1) and student (phase 3) are 112 
publicly released along with the annotations for JumboPose and can be found at 113 
https://github.com/QuadPose. 114 

QuadPose method 115 
The QuadPose is a robust method that handles diverse quadruped pose estimation datasets as two 116 
standardized datasets. It leverages top-down pose estimation 40,43, 39,41 base architectures modified 117 
with dual prediction heads that conform to the defined unified standards. Top-down methods are 118 
chosen for their ability to first detect and classify objects before pose estimation, allowing for a 119 
binary classification step that dynamically routes input data to the appropriate prediction head (Fig. 120 
1b).  In Phase 1, QuadPose follows a curriculum learning strategy, where training data is 121 
introduced progressively to improve model adaptability. By Phase 3, the model undergoes 122 
concurrent training, where both manually labeled and pseudo-labeled datasets are trained 123 
simultaneously to refine predictions across species. 124 

Benchmarks 125 
To evaluate the effectiveness of the QuadPose framework, we conducted experiments on three 126 
animal pose estimation datasets: Animal-Pose, AP-10K, and JumboPose. We compared three 127 
training strategies across multiple state-of-the-art architectures modified with dual prediction 128 
heads. The training strategies evaluated include 1) the Conventional training strategy, where all 129 
datasets are trained simultaneously, serving as a baseline, 2) Progressive training, where data is 130 
introduced incrementally using a curriculum learning approach, and 3) Progressive + SSL (semi-131 

Keypoint Definition Keypoint Definition Keypoint Definition Keypoint Definition 
0 Bottom trunk 9 Right bottom ear 18 Top left tip ear 27 Right back knee 
1 Mid trunk 10 Left bottom ear 19 Withers 28 Left back knee 
2 Top trunk 11 Right bottom tip ear 20 Tail 29 Right front foot 
3 Bottom right tusk 12 Left bottom tip ear 21 Right front elbow 30 Left front foot 
4 Bottom left tusk 13 Right side tip ear 22 Left front elbow 31 Right back foot 
5 Top right tusk 14 Left side tip ear 23 Right back elbow 32 Left back foot 
6 Top left tusk 15 Top right ear 24 Left back elbow   
7 Right eye 16 Top left ear 25 Right front knee   
8 Left eye 17 Top right tip ear 26 Left front knee   

https://github.com/Obafemi-Jinadu/QuadPose
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supervised learning), which improves model generalization by using pseudo-labels. Fig. 2 and 132 
Table 1 present the mean Average Precision (mAP) scores for each method and model 133 
configuration. The global average mAP (Avg. mAP) and relative improvements (∆	Avg. mAP) 134 
relative to the conventional baseline method are also reported. 135 

Figure 2.  Benchmarking performance of QuadPose across datasets and training strategies. (a-c) Mean 136 
Average Precision (mAP) scores for QuadPose on Animal-Pose, AP-10K, and JumboPose validation 137 
datasets, evaluated across different architectures on the progressive + SSL training approach. The ViTPose 138 
family of models achieves the highest mAP across all datasets. d. Comparative performance of the three 139 
training strategies: Conventional baseline training, Progressive training, and Progressive + semi-supervised 140 
learning (SSL) using pseudo-labels e. Qualitative results of the multi-task pose estimation problem, showing 141 
keypoint predictions for elephants and other quadrupeds, the images used for qualitative analysis were 142 
obtained from 38,30,44 and the Cummings School of Veterinary Medicine. 143 
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Table 1 results: Performance comparison of QuadPose across different architectures and training 144 
strategies 145 

  Dataset (mAP)  
Training Method Architecture Animal-Pose AP-10K JumboPose  Avg. mAP ∆	Avg. mAP 

Conventional HRNet-w48 73.90 74.8 91.8 80.17 - 
Progressive       HRNet-w48 70.66 77.04 90.04 79.23 -0.94 
Progressive + SSL HRNet-w48  76.57 80.71 87.32 81.5 1.33  
Conventional HRNet-w32  68.49 69.43 90.0 75.97 - 
Progressive HRNet-w32 70.62 76.39 84.22 77.07 1.10 
Progressive + SSL HRNet-w32  77.60 78.70 81.11 79.14 3.17      
Conventional ViTPose-S 64.10 67.7 85.6 72.47 - 
Progressive ViTPose-S 66.50 68 88.7 74.40 1.93 
Progressive + SSL ViTPose-S  71.50 73.00 89.40 77.97 5.50 
Conventional ViTPose-B 76.40 78.5 90.2 81.70 - 
Progressive ViTPose-B 76.30 80.3 92.6 83.07 1.37 
Progressive + SSL ViTPose-B 78.70 82.0 93.1 84.60 2.90 
Conventional ViTPose-L 78.30 83.7 92.7 84.90 - 
Progressive ViTPose-L 80.40 88.2 94.5 87.70 2.80  
Progressive + SSL ViTPose-L 81.50 87.7 94.3 87.83 2.93 
Conventional ViTPose-H 77.90 83.3 93 84.73 - 
Progressive ViTPose-H 80.30 88.2 94.7 87.73 3.00  
Progressive + SSL ViTPose-H  81.00 87.6 94.6 87.73 3.00 
Conventional TransPose-w48 65.90 63.6 91.7 73.73 - 
Progressive TransPose-w48 68.12 65.28 86.53 73.92 0.19 
Progressive + SSL TransPose-w48 74.32 74.66 85.76 78.25 4.52 
Conventional TransPose-w32 62.65 60.41 90.41 71.16 - 
Progressive TransPose-w32 65.22 64.25 84.05 71.16 0.00 
Progressive + SSL TransPose-w32 70.58 72.11 83.95 75.55 4.39 

The mAP scores (%) for Animal-Pose, AP-10K, and JumboPose datasets using different training strategies: 146 
Conventional training (baseline), Progressive training, and Progressive + SSL (semi-supervised learning) 147 
with pseudo-labels. The global average mAP across all datasets (Avg. mAP) and the relative improvement 148 
(Δ Avg. mAP) compared to the conventional baseline are reported. Results are shown for multiple model 149 
architectures, including HRNet, ViTPose, and TransPose. The best-performing strategy for each 150 
architecture is highlighted in bold. 151 

Conventional Training  152 
This training strategy provides the baseline for this study. Overall, it can be observed that the larger 153 
model variants outperform their smaller counterparts across all datasets considered, with the 154 
ViTPose-L and ViTPose-H achieving the highest average mAP of 84.9 and 84.73, respectively. In 155 
the HRNet models, the HRNet-w48 achieves an average mAP of 80.17, while the HRNet-w32 156 
attains an average mAP of 75.97. Similarly, within the TransPose family of architectures, 157 
TransPose-w32 and TransPose-w48 report average mAP scores of 71.16 and 73.73, respectively. 158 
This reflects the influence of model size on performance in this training paradigm. These baseline 159 
results establish a reference for assessing the performance gains introduced by the progressive and 160 
the progressive + SSL training strategies. 161 
 162 
Progressive Training  163 

 c 
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The progressive training strategy aims to improve model generalization by gradually introducing 164 
training data in stages. Compared to conventional training, which processes all datasets 165 
simultaneously, progressive training significantly improves mAP scores across Animal-Pose and 166 
AP-10K, as shown in Table 1 and Fig. 2. In the ViTPose architectures, there is an average mAP 167 
improvement of 2.275, with all three datasets reporting consistent gains. The HRNet and 168 
TransPose architectures show similar trends, where the progressive training slightly outperforms 169 
or is at par with the conventional training. While an upward trend can be observed holistically, it 170 
can be seen from Table 1 that JumboPose performance tends to slightly decline in the HRNet and 171 
TransPose architectures as it transitions from conventional to progressive training strategies. This 172 
can be attributed to a few factors, including the continual learning approach adopted in training 173 
these architectures, where Animal-Pose and AP-10K are introduced first and second, for the task 174 
of learning representations to predict poses of general quadrupeds. Lastly, JumboPose is 175 
introduced for the task of learning representations to predict poses of elephants (see Methods). 176 
With this progressive training configuration, the model gradually catches up to learn elephant-177 
specific poses; additionally, the sheer difference in volume between datasets for other quadrupeds 178 
and elephants is also a contributing factor (see methods, Table 2).    179 

Progressive + Semi Supervised Learning (SSL) Training 180 
Here a student model integrates pseudo-labels generated by a progressively trained teacher model, 181 
achieves the highest performance gains across all architectures. Notably, some models reach an 182 
increase of up to 5.5 in average mAP, demonstrating the effectiveness of this strategy. 183 
For the ViTPose models, the ViTPose-S flavor sees the greatest performance boost from the 184 
progressive + SSL, with a 5.5 average mAP improvement over the baseline. Comparing the 185 
progressive (which serves as the teacher model) and the progressive + SSL (which serves as the 186 
student model) strategies, a 3.57 average mAP gain is recorded. For ViTPose-B variant, a 2.90 187 
average mAP increase is reported between the conventional baseline and progressive + SSL 188 
approaches, while a 1.56 average mAP improvement is observed between the progressive and 189 
progressive + SSL training approaches. For the larger variants, ViTPose-L and ViTPose-H, the 190 
gaps between the conventional and progressive + SSL training are 2.93 and 3.00 average mAP, 191 
respectively in favor of the progressive + SSL approach. However, analyzing the progressive 192 
(teacher model) and progressive + SSL, the performance gains while present begin to plateau, with 193 
marginal improvements of 0.18 on ViTPose-L and no improvement on the ViTPose-H. This 194 
suggests that while the Progressive + SSL is highly effective for smaller ViTPose architectures, its 195 
impact diminishes as model size increases, possibly due to the larger models already capturing rich 196 
feature representations during progressive training. 197 

Similarly, the HRNet-based models enjoy a performance jump with the progressive + SSL 198 
approach. For HRNet-w48, which achieves an average mAP of 81.50, there is a 1.33 average mAP 199 
increase over the baseline. For HRNet-w32 with an average mAP of 79.14, there is a 3.17 average 200 
mAP increase over the baseline.  The TransPose architectures also, see a significant performance 201 
boost with the progressive + SSL approach, whereas in the TrasnPose-w48, with an average mAP 202 
of 78.25, there is an average mAP increase of 4.52 when compared to the baseline. For the 203 
TransPose-w32 of average mAP 75.55, there is a 4.39 mAP gap over the baseline. 204 

 205 
Discussion 206 
This paper introduces QuadPose, a unified standard for pose estimation in mammals and a 207 
straightforward yet efficient framework for effectively utilizing noisy labels to improve a model’s 208 
generalizability to unseen animal breeds and species. By leveraging large amounts of unlabeled 209 
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data to generate pseudo-labels, the student model learns better feature representations for 210 
localizing joints. Results show that this semi-supervised framework leads to an average 211 
performance boost in mAP of about 3.5 across various state-of-the-art pose estimation models. 212 
Furthermore, this work conducts a detailed performance evaluation of standard convolutional 213 
neural networks and transformer-based networks for animal pose estimation. Results show that 214 
ViTPose-based architectures perform best, as they demonstrate superior generalization capabilities 215 
and robustness against catastrophic forgetting. Finally, this study presents JumboPose, a large-216 
scale dataset for elephant pose estimation and landmark localization.  217 

Despite its strong performance improvements, QuadPose has certain limitations. One of its 218 
primary challenges is handling complex and crowded scenes. Top-down models struggle in highly 219 
occluded and densely populated scenarios typically due to detector performance where it might 220 
miss objects that are heavily occluded or merge multiple objects of interest into a single bounding 221 
box, in such detection failure cases there is no recourse to recovery 37. Addressing this challenge 222 
will require improved multi-instance pose tracking techniques and enhanced keypoint association 223 
strategies. Additionally, since QuadPose relies on a pretrained object detector, classification errors 224 
of the detector can further impact performance. Misclassification may lead to incorrect routing. 225 
For example, if an elephant is wrongly detected as another animal, it will be routed to the general 226 
quadruped prediction head instead of the elephant-specific head, and vice versa. This 227 
misclassification introduces significant errors in keypoint localization and affects model 228 
performance. Future improvements may involve integrating an uncertainty-aware detection system 229 
or implementing self-correcting mechanisms to mitigate routing errors. Generalization to Asian 230 
elephants is another limitation. The model is trained primarily on African elephants, which have 231 
larger ears compared to their Asian counterparts. As a result, the model struggles to accurately 232 
predict features of Asian elephants due to their distinct morphological differences. Expanding the 233 
JumboPose to include Asian elephants will be crucial for improving the model’s adaptability to 234 
different elephant species. These limitations are shown in Fig. 3. 235 

 236 

 237 
 238 
Figure 3. Examples of suboptimal results due to model limitations a., b., d. show the complex, crowded, 239 
and occluded poses. c. and f. illustrate the output of the current model on Asian elephants with smaller 240 
ears than their African counterparts e. error caused by the detector model misclassifying an elephant, 241 
leading to it being incorrectly routed to the general quadruped prediction head. 242 
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Future research will focus on mitigating these challenges by reducing the framework’s 243 
dependence on detector classification performance to minimize misrouting errors. Additionally, 244 
expanding the dataset to include Asian elephants will help improve species-specific generalization. 245 
Furthermore, developing models more robust to handling extremely crowded scenes will ensure 246 
better performance in real-world multi-animal environment where these animals often move in 247 
groups. By addressing these limitations, QuadPose can further enhance its applicability in wildlife 248 
conservation, behavioral analysis, and veterinary science, making it a more reliable solution for 249 
scalable and adaptable animal pose estimation.  250 

 251 
Methods 252 

Datasets 253 
Three animal pose estimation datasets were used for phase 1 training and model performance 254 
evaluation: Animal-Pose37, AP-10K44, and JumboPose. Additionally, eleven supplementary 255 
datasets, which do not contain pose annotations, were used for pseudo-label generation. The 256 
following sections provide further details on these datasets. 257 
 258 
Animal-Pose Dataset 259 
Cao et al.37 proposed the Animal-pose dataset for developing cross-domain adaptation models for 260 
animal pose estimation. The dataset contains 6,117 annotated instances of cats, dogs, sheep, horses, 261 
and cows, with 20 keypoints defining their anatomical structures. For full details, refer to Cao et 262 
al.37. 263 
 264 
AP-10K Dataset 265 
Yu et al.45 curated the AP-10K, a large-scale manually annotated dataset for animal pose 266 
estimation. It consists of 10,015 images and over 13,000 labeled instances with 23 animal families 267 
and 54 species, making it the largest dataset for pose estimation in mammals. The keypoint 268 
annotation convention follows a structure similar to human pose estimation, with17 keypoints 269 
representing anatomical features of the animals. For full details, refer to Yu et al.45.  270 
 271 
JumboPose Dataset 272 
Elephants, particularly, African elephants possess distinctive features, such as large ears, trunks, 273 
and tusks, which differentiate them from most other quadrupeds. These features provide rich 274 
additional information that can enhance behavioral understanding. However, current annotation 275 
styles in state-of-the-art animal pose datasets do not capture these key anatomical distinctions.  276 
To address this, we introduce JumboPose, a large-scale dataset specifically designed for elephant 277 
pose estimation. JumboPose contains over 2,000 labeled images and 6,617 unlabeled images of 278 
elephants. It consists of 33 keypoints with 20 keypoints defining the anatomical structure of the 279 
elephant similar to other quadrupeds in Animal-Pose37, and an additional 13 keypoints that capture 280 
the nuanced features specific to elephants. The elephant images annotated to create JumboPose 281 
was derived from the ElPephants dataset42 originally designed for elephant re-identification. Fig. 282 
1c illustrates the annotation style used in JumboPose, while Fig. 4 highlights its motivation and 283 
structure. 284 
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 285 
Figure 4. Comparison of model predictions using general quadruped vs. elephant-specific prediction head. 286 
(a., c.) Model outputs from the general quadruped prediction head, which fails to capture elephant-specific 287 
features such as trunks and ears. (b., d.) Model outputs from the elephant-specific prediction head, which 288 
correctly identifies distinctive anatomical features. These results highlight the importance of JumboPose in 289 
improving elephant pose estimation. 290 
Unlabeled Data Curation 291 
The unlabeled data used to generate pseudo labels were sourced from the following datasets; 292 
Macaque35 ,Tiger33 ,MS-COCO30, African Wildlife46, Animal Image Dataset47, Animals_5 30, 293 
Animals-1049, Endangered Animals50, IUCN Animals Dataset51 , Wild Cats 52, and Asian vs 294 
African Elephants53. Since MS-COCO is not explicitly an animal dataset, unlabeled elephant 295 
images were extracted by running it through an object detection algorithm (YOLOv82). 296 
 297 

Table 2: Dataset summarization.  298 
Dataset Species Number of keypoints Number of images 

Manually Labeled Data 
Animal-Pose Dataset 37 5 20 6,117 
Ap-10K 45 54 17 10,015 
JumboPose (ours) 1 33 2,078 

Unlabeled Data for Pseudo-label Generation 
Tiger 33 1 - 4,124 
Macaque 35 1 - 13,085 
MS COCO30 (elephants) - - 2,202 
African Wildlife 46 4 - 1,504 
Animal Image Dataset 47 3 - 3,000 
Animals_5 48 10 - 5,233 
Animals-10 49 6 - 16,148 
Endangered Animals 50 4 - 800 
IUCN Animals Dataset 51 4 - 2,327 
Wild Cats 52 5 - 3,080 

a b
 

c d
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Provides an overview of the datasets utilized for teacher model training (Phase 1) and pseudo-label 299 
generation (Phase 3). Three datasets (Animal-Pose, AP-10K, and JumboPose) were used for Phase 1 300 
training, comprising a total of 18,212 manually labeled images. For Phase 3, pseudo-labels were generated 301 
from the listed unlabeled datasets, contributing to a total of 71,834 images used in training.  302 
Note: The MS COCO dataset contains 2,202 elephant images, extracted specifically for this study. 303 
Dataset Standardization 304 
The data is standardized into two formats based on quadruped type: elephants and other 305 
quadrupeds. The elephant type is straightforward, as JumboPose is the only dataset explicitly 306 
designed for elephant pose estimation, to the best of our knowledge. For other quadrupeds, 307 
differences in the number of keypoints, labeling style, and keypoint location across datasets 308 
necessitate a standardized format for model training. The anatomical structure proposed by Cao et 309 
al.37, is adopted as it accounts for an additional number of useful keypoints like the ears and 310 
withers. Keypoints that are not annotated in certain datasets are assigned a "missing" tag and left 311 
unannotated to maintain consistency across datasets. Fig. 5 shows how the AP-10K annotation 312 
style is remapped accordingly. 313 

 

 

 
Figure 5. This figure illustrates how AP-10K keypoints are remapped and standardized to align with the Animal-
Pose anatomical structure. 
 314 
QuadPose Training 315 

Asian vs African Elephants 53 2 - 2,123 
Total Pseudo labels - Elephants   6,617 
Total Pseudo-labels - Other Quadrupeds   47,007 
Total   71,834 
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The proposed model is tasked with two objectives: 1) elephant pose estimation, routed to 316 
prediction head, H1 and 2) other quadruped pose estimation, routed to prediction head, H2. The 317 
general architectural overview is provided in Fig. 1b. The dual-head architecture gradually learns 318 
and retains good representations for both tasks. As shown in Fig. 1a, there are three phases in the 319 
training pipeline.  Curriculum learning, which is a method used to gradually increase the 320 
complexity of data samples in the training process54 is adopted in training, specifically for task 2. 321 
A simple yet efficient curriculum learning strategy is adopted, where data samples are introduced 322 
in order of difficulty, progressing from easy examples (examples with well-defined poses with 323 
most joints visible) to more challenging ones (examples of animals with occluded or missing 324 
joints). This strategy is adopted in training the teacher (𝑓!) network.  325 

For the first phase, training is done on three datasets: JumboPose (33 keypoints) for task 1, and 326 
Animal pose (20 keypoints) and AP-10k (17 keypoints) for task 2. A curriculum based on the 327 
number of annotated keypoints is adopted. This helps determine which datasets are prioritized per 328 
task at multiple intervals during training, ensuring the model progressively learns from data 329 
distributions that provide the most information before adapting to less informative ones, traversing 330 
from the known to the less known. This structured progression improves cross-dataset learning 331 
and enhances the model’s generalization capabilities across different species. The training 332 
strategies empirically derived to give the best performance by model architecture are: 333 
a) ViTPose-based models: 334 

• Initial training begins with JumboPose and Animal-Pose as it simultaneously provides 335 
standard baselines for both tasks.  336 

• Finally, AP-10K dataset is progressively introduced allowing for better refinement of 337 
task 2 representations 338 

b) HRNet and TransPose-based models 339 
• Initial training starts with Animal-Pose as it provides the standard baseline for task 2. 340 
• AP-10k is introduced. 341 
• Finally, JumboPose is introduced in a continual learning manner to learn task 1 342 

representations while retaining task 2’s representations.  343 
In the second phase, pseudo-labels are generated from a large set of unlabeled data of 344 

unseen animal species using the learned weights of the teacher network 𝑓!. Each image sample is 345 
classified as either ‘easy’ or ‘hard’ based on the pose complexity, which is determined by the 346 
number of high-confidence keypoints detected in each instance. The underlying hypothesis is that 347 
an animal’s pose is better defined when its complete anatomical structure is visible.  By setting a 348 
high confidence threshold, unreliable labels are filtered out, ensuring only accurate labels 349 
contribute to training. Due to resource constraints and to prevent the models from over-committing 350 
to low-confidence and potentially misleading labels, only ‘easy’ samples are utilized in this study. 351 

In the third phase, the ground-truth annotated datasets, and the pseudo-labeled data are 352 
used to train the student network, 𝑔∅. The teacher network distills learned knowledge into the 353 
student, improving the model’s ability to generalize across diverse species. This knowledge 354 
distillation process helps the student network capture robust feature representations and enhances 355 
overall pose estimation. 356 

Model Specific Training Configurations 357 
The following shows the specific learning settings employed for each architecture. All models 358 
were trained on a single NVIDIA V100 GPU and implemented using the PyTorch deep learning 359 
framework55. 360 
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ViTPose model training. The learning rate was reduced at epochs 18 and 150 to improve training 361 
stability and performance. Initially, the learning rate reduction was scheduled only at epoch 150, 362 
coinciding with the introduction of the AP-10K dataset. However, empirical analysis revealed that 363 
an earlier reduction at epoch 18 further stabilizes training and enhances convergence.  As shown 364 
in Fig. 6, early reduction in learning rate improves training stability. Table 3 summarizes the 365 
training settings used for the ViTPose family of models. 366 
 367 

Table 3: ViTPose Training Settings 
Starting LR 0.0005 
LR Scheduler Multi-step 
LR Step Factor 0.1 
LR Steps (epochs) [18,150, 400, 450] 
Batch size 32 
Optimizer Adam56  

Data Arrangement for progressive training Phase 1 
Epochs 0 -149 Animal-Pose + JumboPose 
Epochs 150 - 349 Animal-Pose + AP-10K + JumboPose 

Data Arrangement for progressive training Phase 3 
Epochs 350 - 500 Animal-Pose + AP-10K + Pseudo_other_quadrupeds + 

JumboPose + Pseudo_elephants 
 368 

 369 
Figure 6. ViTPose-B phase 1 training performance a. The pose accuracy per epoch b. The Loss per epoch: 370 
the red line - when the learning rate is not reduced at the 18th epoch, leading to an unstable training that 371 
eventually converges, the green line - when the learning rate is reduced at the 18th epoch leading to a more 372 
stable training with better performance. Note, the dip at the 150th epoch occurs as a result of introducing 373 
AP-10K dataset in the progressive training. 374 
 375 
HRNet and TransPose model training. These models were found to be more sensitive to training 376 
with the proposed dual-prediction head modification compared to the ViTPose-based models.   377 
Hence, the need for a carefully designed continual learning approach. A common issue 378 
encountered in continual learning is catastrophic forgetting, where models lose previously learned 379 
information when adapting to new tasks57.  This occurs because the model continuously updates 380 

a b 
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its parameters, often overwriting past knowledge from an initial task in favor of a more recent task. 381 
An ideal multitask model mitigates this by learning an optimal parameter space that effectively 382 
generalizes across tasks while preserving previously acquired knowledge. To mitigate catastrophic 383 
forgetting in HRNet and TransPose-based models, we adopted the training settings outlined in 384 
Table 4. Specifically, we reduced the learning rate by a smaller multiplication factor of 0.05, which 385 
helps in stabilizing updates and retaining existing knowledge. By implementing a more gradual 386 
learning rate reduction, the model's updates become less aggressive, thereby minimizing the risk 387 
of overwriting previously learned information. 388 
 389 
Table 4: HRNet & TransPose Training Settings 
Starting LR 0.001 
LR Scheduler Multi-step 
LR Step Factor 0.05 
LR Steps (epochs) 120 
Batch size (HRNet | TransPose) 32 | 24 
Optimizer Adam56  

Data Arrangement for progressive training Phase 1 
Epochs 0 -74 Animal-Pose 
Epochs 75 - 119 Animal-Pose + AP-10K 
Epochs 120 - 349 Animal-Pose + AP-10K + JumboPose 

Data Arrangement for progressive training Phase 3 
Epochs 350 - 500 Animal-Pose + AP-10K + Pseudo_other_quadrupeds + JumboPose + 

Pseudo_elephants 
 390 
Cost function 391 
The mean squared error (MSE) is used to evaluate the Euclidian distance between the predicted 392 
and ground-truth keypoints. The objective function,	𝐿#$%&'	for training the network using a set of 393 
labeled and pseudo-labeled datasets, is given as 394 
 395 

𝐿#$%&' 	= 	 𝐿()* 	+ 	𝑐𝐿*(+),$ (1) 
 396 
Where 𝐿()* and 𝐿*(+),$ are the mean squared errors (MSE) on the manually labeled data 397 
(supervised) and pseudo-labeled examples, respectively. The binary flag 𝑐	 determines if pseudo-398 
labels are used: 399 
 400 

𝑐	 = 	 *1, 𝑖𝑓	𝑢𝑠𝑖𝑛𝑔	𝑝𝑠𝑒𝑢𝑑𝑜 − 𝑙𝑎𝑏𝑒𝑙𝑠			(𝑠𝑡𝑢𝑑𝑒𝑛𝑡	𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 𝑝ℎ𝑎𝑠𝑒	3)		0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒					(𝑡𝑒𝑎𝑐ℎ𝑒𝑟	𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 𝑝ℎ𝑎𝑠𝑒	1)  (2) 

 401 
Each loss term, 𝐿()* or 𝐿*(+),$ is the sum of MSE losses for task 1 (elephant pose estimation) 402 
and task 2 (other quadruped pose estimation): 403 
 404 

𝐿 = 𝐿!"#(𝑦$%	, 𝑦'$%) + 𝐿!"#(	𝑦$&	, 𝑦'$&) (3) 
 405 
Where 𝑦$% and 𝑦$& are the ground-truth labels for tasks 1 and 2, respectively while 𝑦'$% and, 𝑦'$& 406 
correspond to model predictions for tasks 1 and 2.  407 
 408 
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𝐿*(+),$ 	= 	@𝑤#
∅𝐿(𝐼#- , 𝑚(𝐼#-|∅)

.

#/0

 
(4) 

 409 
𝐿*(+),$ is similar to equation (8) in the work proposed by Cao et al. 37 for self-paced selection of 410 
pseudo-labels and 𝑚(𝐼#-|∅) is the output by the model of current weights ∅ on an input image 𝐼#- . 411 
𝑤#
∅ denotes whether the pose prediction on 𝐼#- is a hard or easy example. 412 

𝑤#
∅ 	= 	 *1.0, 𝑖𝑓	𝐶(𝑚(𝐼#

-|∅)) 	> 	𝜇													
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																														

 (5) 

 413 
Where 𝐶(𝑚(𝐼#-|∅)) denotes the output confidence score on 𝐼#- by the current model and 𝜇 is the 414 
threshold to filter unreliable outputs. 𝜇 is set to 0.9 for our task to select only high confidence 415 
pseudo-labels. 416 
Algorithms 417 
Algorithm 1 outlines the training process using the dual prediction head architecture. Where a 418 
data sample could either be elephant (k	=1) or other quadrupeds (k	=	2).	Both sample types pass 419 
through the same encoder backbone, which extracts features and learn representations common to 420 
all quadrupeds. For the prediction heads, if k = 1(elephant), the extracted features are routed to the 421 
prediction head, 𝐻% to generate 33 heatmaps corresponding to the keypoints. If k = 2 (other 422 
quadrupeds), the extracted features are routed to prediction head, 𝐻& to produce 20 heatmaps 423 
corresponding to the predicted key points.  424 

Algorithm 1 Dual-Head Model Training 
Input:  Training data, 𝐷 = +𝑥$' ,			𝑦$' 	-: 𝑘 ∈ {1, 2} 

𝑘 = 1 ⊲ elephant,  𝑘 = 2 ⊲ other quadrupeds   
𝑥$' , 𝑦$' ⊲ 𝑖𝑡ℎ input image and ground truth respectively 
Encoder backbone, 𝐸𝑛𝑐 
Prediction Heads, 𝐻%	𝑎𝑛𝑑	𝐻& 

1: Initialize Encoder backbone 𝐸𝑛𝑐 and Prediction Heads 𝐻&	𝑎𝑛𝑑	𝐻& 
2: repeat 
3: +𝑥$' ,			𝑦$' 	-~𝐷	 ⊲ sample	batch	from	dataset 
 ∅ = 	𝐸𝑛𝑐(𝑥$') ⊲ 𝑑𝑎𝑡𝑎	𝑔𝑜𝑒𝑠	𝑖𝑛𝑡𝑜	𝑒𝑛𝑐𝑜𝑑𝑒𝑟	𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 
4: 𝑖𝑓	𝑘		 == 	1: 
5:  𝑦'$% = 𝐻%(∅) ⊲		Route ∅ to 𝐻% 
6: 𝑒𝑙𝑖𝑓	𝑘		 == 	2: 
7:  𝑦'$& = 𝐻&(∅) ⊲		Route ∅ to 𝐻& 
8:        𝐿 = 𝑙𝑜𝑠𝑠(𝑦$%	, 𝑦'$%) + 𝑙𝑜𝑠𝑠(	𝑦$&	, 𝑦'$&) 
9: Take gradient step to update 𝐸𝑛𝑐, 𝐻%	𝑎𝑛𝑑	𝐻& 
10: until training converges 

Algorithm 2 describes the inference process of the dual prediction head architecture. This strongly 425 
leverages the top-down nature of the pose estimation algorithms considered. First, an image is 426 
processed by a detector, which outputs the object class along with the bounding box coordinates. 427 
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The detected class is then binarized, assigning ‘1’ to elephants and ‘2’ to other quadrupeds. The 428 
bounding box coordinates define a cropped image region, which is passed through the encoder 429 
backbone for feature extraction. The extracted features are then routed identically to Algorithm 1. 430 

Algorithm 2 Dual-Head Model Inferencing 
Input:  Image = 𝑥	 

Detector  𝑑 
Trained model Encoder backbone 𝐸𝑛𝑐	and	Prediction Heads 𝐻%	𝑎𝑛𝑑	𝐻& 

1: Load trained Encoder backbone, 𝐸𝑛𝑐 and Prediction Heads, 𝐻&,	𝑎𝑛𝑑	𝐻& weights 
2: 𝑥' = 𝑑(𝑥) ⊲ 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑	𝑜𝑏𝑗𝑒𝑐𝑡	𝑓𝑟𝑜𝑚	𝑖𝑚𝑎𝑔𝑒	𝑤𝑖𝑡ℎ	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑐𝑙𝑎𝑠𝑠, 𝑘 
3: ∅ = 	𝐸𝑛𝑐(𝑥') ⊲ 𝑑𝑎𝑡𝑎	𝑔𝑜𝑒𝑠	𝑖𝑛𝑡𝑜	𝑒𝑛𝑐𝑜𝑑𝑒𝑟	𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 
4: i𝑓	𝑘		 == 	1: 	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑐𝑙𝑎𝑠𝑠	𝑖𝑠	′1′ (elephant class) 
5:  𝑦'$% = 𝐻%(∅) ⊲		Route ∅ to 𝐻% 
6: 𝑒𝑙𝑖𝑓	𝑘		 == 	2: 	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑐𝑙𝑎𝑠𝑠	𝑖𝑠	′2′ (other quadruped class) 
7:  𝑦')& = 𝐻&(∅) ⊲		Route ∅ to 𝐻& 

 431 
Model Architectures 432 
QuadPose employs top-down models, including ViTPose40, HRNet with polarized self-attention 433 
for improved representation capacity39,18 and TransPose41, each modified with dual prediction 434 
heads to enable multi-task pose estimation for elephants and other quadrupeds.  This method 435 
follows a detection-first approach, which isolates objects of interest using bounding boxes while 436 
simultaneously leveraging class information as a signal to route the detected objects to the 437 
appropriate prediction head. Specifically, the classification is binarized into two categories: (1) 438 
Class 1- if an elephant is detected, it is routed to prediction head H1 and (2) Class 2 – if a general 439 
quadruped is detected, it is routed to prediction head H2. This adaptive routing mechanism ensures 440 
that each animal is processed by the most relevant prediction head. A pretrained faster R-CNN1 441 
model is used for object detection during inference. 442 

Evaluation Metric 443 
The Object Keypoint Similarity (OKS)58 calculates the distance between predicted keypoints, and 444 
ground-truth points normalized by the object's scale59. OKS values serve as thresholds for 445 
computing mean average precision (mAP), which ranges from 0 to 1, with higher values indicating 446 
more accurate keypoint localization. 447 
 448 

𝑂𝐾𝑆 = 	
∑ 𝑒𝑥𝑝(−𝑑%1% /2𝑠1𝑘%1)𝛿(𝑣% 	> 	0)

∑ 𝛿(𝑣% 	> 	0)%
 

(6) 

 449 
Where, 450 

• di is the Euclidean distance between the ground-truth and predicted keypoint 451 
• s is the square root of the object segment area 452 
• k is the per-keypoint constant that controls fall off 453 
• vi is the visibility flag that can be 0, 1, 2 for not labeled, labeled but not visible and visible 454 

and labeled respectively 455 
• 𝛿(𝑣% 	> 	0) ensures only labeled keypoints contribute  456 
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